ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  respreima GIF version

Theorem respreima 5613
Description: The preimage of a restricted function. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
respreima (Fun 𝐹 → ((𝐹𝐵) “ 𝐴) = ((𝐹𝐴) ∩ 𝐵))

Proof of Theorem respreima
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 funfn 5218 . . 3 (Fun 𝐹𝐹 Fn dom 𝐹)
2 elin 3305 . . . . . . . . 9 (𝑥 ∈ (𝐵 ∩ dom 𝐹) ↔ (𝑥𝐵𝑥 ∈ dom 𝐹))
3 ancom 264 . . . . . . . . 9 ((𝑥𝐵𝑥 ∈ dom 𝐹) ↔ (𝑥 ∈ dom 𝐹𝑥𝐵))
42, 3bitri 183 . . . . . . . 8 (𝑥 ∈ (𝐵 ∩ dom 𝐹) ↔ (𝑥 ∈ dom 𝐹𝑥𝐵))
54anbi1i 454 . . . . . . 7 ((𝑥 ∈ (𝐵 ∩ dom 𝐹) ∧ ((𝐹𝐵)‘𝑥) ∈ 𝐴) ↔ ((𝑥 ∈ dom 𝐹𝑥𝐵) ∧ ((𝐹𝐵)‘𝑥) ∈ 𝐴))
6 fvres 5510 . . . . . . . . . 10 (𝑥𝐵 → ((𝐹𝐵)‘𝑥) = (𝐹𝑥))
76eleq1d 2235 . . . . . . . . 9 (𝑥𝐵 → (((𝐹𝐵)‘𝑥) ∈ 𝐴 ↔ (𝐹𝑥) ∈ 𝐴))
87adantl 275 . . . . . . . 8 ((𝑥 ∈ dom 𝐹𝑥𝐵) → (((𝐹𝐵)‘𝑥) ∈ 𝐴 ↔ (𝐹𝑥) ∈ 𝐴))
98pm5.32i 450 . . . . . . 7 (((𝑥 ∈ dom 𝐹𝑥𝐵) ∧ ((𝐹𝐵)‘𝑥) ∈ 𝐴) ↔ ((𝑥 ∈ dom 𝐹𝑥𝐵) ∧ (𝐹𝑥) ∈ 𝐴))
105, 9bitri 183 . . . . . 6 ((𝑥 ∈ (𝐵 ∩ dom 𝐹) ∧ ((𝐹𝐵)‘𝑥) ∈ 𝐴) ↔ ((𝑥 ∈ dom 𝐹𝑥𝐵) ∧ (𝐹𝑥) ∈ 𝐴))
1110a1i 9 . . . . 5 (𝐹 Fn dom 𝐹 → ((𝑥 ∈ (𝐵 ∩ dom 𝐹) ∧ ((𝐹𝐵)‘𝑥) ∈ 𝐴) ↔ ((𝑥 ∈ dom 𝐹𝑥𝐵) ∧ (𝐹𝑥) ∈ 𝐴)))
12 an32 552 . . . . 5 (((𝑥 ∈ dom 𝐹𝑥𝐵) ∧ (𝐹𝑥) ∈ 𝐴) ↔ ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐴) ∧ 𝑥𝐵))
1311, 12bitrdi 195 . . . 4 (𝐹 Fn dom 𝐹 → ((𝑥 ∈ (𝐵 ∩ dom 𝐹) ∧ ((𝐹𝐵)‘𝑥) ∈ 𝐴) ↔ ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐴) ∧ 𝑥𝐵)))
14 fnfun 5285 . . . . . . . 8 (𝐹 Fn dom 𝐹 → Fun 𝐹)
15 funres 5229 . . . . . . . 8 (Fun 𝐹 → Fun (𝐹𝐵))
1614, 15syl 14 . . . . . . 7 (𝐹 Fn dom 𝐹 → Fun (𝐹𝐵))
17 dmres 4905 . . . . . . 7 dom (𝐹𝐵) = (𝐵 ∩ dom 𝐹)
1816, 17jctir 311 . . . . . 6 (𝐹 Fn dom 𝐹 → (Fun (𝐹𝐵) ∧ dom (𝐹𝐵) = (𝐵 ∩ dom 𝐹)))
19 df-fn 5191 . . . . . 6 ((𝐹𝐵) Fn (𝐵 ∩ dom 𝐹) ↔ (Fun (𝐹𝐵) ∧ dom (𝐹𝐵) = (𝐵 ∩ dom 𝐹)))
2018, 19sylibr 133 . . . . 5 (𝐹 Fn dom 𝐹 → (𝐹𝐵) Fn (𝐵 ∩ dom 𝐹))
21 elpreima 5604 . . . . 5 ((𝐹𝐵) Fn (𝐵 ∩ dom 𝐹) → (𝑥 ∈ ((𝐹𝐵) “ 𝐴) ↔ (𝑥 ∈ (𝐵 ∩ dom 𝐹) ∧ ((𝐹𝐵)‘𝑥) ∈ 𝐴)))
2220, 21syl 14 . . . 4 (𝐹 Fn dom 𝐹 → (𝑥 ∈ ((𝐹𝐵) “ 𝐴) ↔ (𝑥 ∈ (𝐵 ∩ dom 𝐹) ∧ ((𝐹𝐵)‘𝑥) ∈ 𝐴)))
23 elin 3305 . . . . 5 (𝑥 ∈ ((𝐹𝐴) ∩ 𝐵) ↔ (𝑥 ∈ (𝐹𝐴) ∧ 𝑥𝐵))
24 elpreima 5604 . . . . . 6 (𝐹 Fn dom 𝐹 → (𝑥 ∈ (𝐹𝐴) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐴)))
2524anbi1d 461 . . . . 5 (𝐹 Fn dom 𝐹 → ((𝑥 ∈ (𝐹𝐴) ∧ 𝑥𝐵) ↔ ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐴) ∧ 𝑥𝐵)))
2623, 25syl5bb 191 . . . 4 (𝐹 Fn dom 𝐹 → (𝑥 ∈ ((𝐹𝐴) ∩ 𝐵) ↔ ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐴) ∧ 𝑥𝐵)))
2713, 22, 263bitr4d 219 . . 3 (𝐹 Fn dom 𝐹 → (𝑥 ∈ ((𝐹𝐵) “ 𝐴) ↔ 𝑥 ∈ ((𝐹𝐴) ∩ 𝐵)))
281, 27sylbi 120 . 2 (Fun 𝐹 → (𝑥 ∈ ((𝐹𝐵) “ 𝐴) ↔ 𝑥 ∈ ((𝐹𝐴) ∩ 𝐵)))
2928eqrdv 2163 1 (Fun 𝐹 → ((𝐹𝐵) “ 𝐴) = ((𝐹𝐴) ∩ 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  cin 3115  ccnv 4603  dom cdm 4604  cres 4606  cima 4607  Fun wfun 5182   Fn wfn 5183  cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-fv 5196
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator