ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  respreima GIF version

Theorem respreima 5441
Description: The preimage of a restricted function. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
respreima (Fun 𝐹 → ((𝐹𝐵) “ 𝐴) = ((𝐹𝐴) ∩ 𝐵))

Proof of Theorem respreima
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 funfn 5058 . . 3 (Fun 𝐹𝐹 Fn dom 𝐹)
2 elin 3184 . . . . . . . . 9 (𝑥 ∈ (𝐵 ∩ dom 𝐹) ↔ (𝑥𝐵𝑥 ∈ dom 𝐹))
3 ancom 263 . . . . . . . . 9 ((𝑥𝐵𝑥 ∈ dom 𝐹) ↔ (𝑥 ∈ dom 𝐹𝑥𝐵))
42, 3bitri 183 . . . . . . . 8 (𝑥 ∈ (𝐵 ∩ dom 𝐹) ↔ (𝑥 ∈ dom 𝐹𝑥𝐵))
54anbi1i 447 . . . . . . 7 ((𝑥 ∈ (𝐵 ∩ dom 𝐹) ∧ ((𝐹𝐵)‘𝑥) ∈ 𝐴) ↔ ((𝑥 ∈ dom 𝐹𝑥𝐵) ∧ ((𝐹𝐵)‘𝑥) ∈ 𝐴))
6 fvres 5342 . . . . . . . . . 10 (𝑥𝐵 → ((𝐹𝐵)‘𝑥) = (𝐹𝑥))
76eleq1d 2157 . . . . . . . . 9 (𝑥𝐵 → (((𝐹𝐵)‘𝑥) ∈ 𝐴 ↔ (𝐹𝑥) ∈ 𝐴))
87adantl 272 . . . . . . . 8 ((𝑥 ∈ dom 𝐹𝑥𝐵) → (((𝐹𝐵)‘𝑥) ∈ 𝐴 ↔ (𝐹𝑥) ∈ 𝐴))
98pm5.32i 443 . . . . . . 7 (((𝑥 ∈ dom 𝐹𝑥𝐵) ∧ ((𝐹𝐵)‘𝑥) ∈ 𝐴) ↔ ((𝑥 ∈ dom 𝐹𝑥𝐵) ∧ (𝐹𝑥) ∈ 𝐴))
105, 9bitri 183 . . . . . 6 ((𝑥 ∈ (𝐵 ∩ dom 𝐹) ∧ ((𝐹𝐵)‘𝑥) ∈ 𝐴) ↔ ((𝑥 ∈ dom 𝐹𝑥𝐵) ∧ (𝐹𝑥) ∈ 𝐴))
1110a1i 9 . . . . 5 (𝐹 Fn dom 𝐹 → ((𝑥 ∈ (𝐵 ∩ dom 𝐹) ∧ ((𝐹𝐵)‘𝑥) ∈ 𝐴) ↔ ((𝑥 ∈ dom 𝐹𝑥𝐵) ∧ (𝐹𝑥) ∈ 𝐴)))
12 an32 530 . . . . 5 (((𝑥 ∈ dom 𝐹𝑥𝐵) ∧ (𝐹𝑥) ∈ 𝐴) ↔ ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐴) ∧ 𝑥𝐵))
1311, 12syl6bb 195 . . . 4 (𝐹 Fn dom 𝐹 → ((𝑥 ∈ (𝐵 ∩ dom 𝐹) ∧ ((𝐹𝐵)‘𝑥) ∈ 𝐴) ↔ ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐴) ∧ 𝑥𝐵)))
14 fnfun 5124 . . . . . . . 8 (𝐹 Fn dom 𝐹 → Fun 𝐹)
15 funres 5068 . . . . . . . 8 (Fun 𝐹 → Fun (𝐹𝐵))
1614, 15syl 14 . . . . . . 7 (𝐹 Fn dom 𝐹 → Fun (𝐹𝐵))
17 dmres 4747 . . . . . . 7 dom (𝐹𝐵) = (𝐵 ∩ dom 𝐹)
1816, 17jctir 307 . . . . . 6 (𝐹 Fn dom 𝐹 → (Fun (𝐹𝐵) ∧ dom (𝐹𝐵) = (𝐵 ∩ dom 𝐹)))
19 df-fn 5031 . . . . . 6 ((𝐹𝐵) Fn (𝐵 ∩ dom 𝐹) ↔ (Fun (𝐹𝐵) ∧ dom (𝐹𝐵) = (𝐵 ∩ dom 𝐹)))
2018, 19sylibr 133 . . . . 5 (𝐹 Fn dom 𝐹 → (𝐹𝐵) Fn (𝐵 ∩ dom 𝐹))
21 elpreima 5432 . . . . 5 ((𝐹𝐵) Fn (𝐵 ∩ dom 𝐹) → (𝑥 ∈ ((𝐹𝐵) “ 𝐴) ↔ (𝑥 ∈ (𝐵 ∩ dom 𝐹) ∧ ((𝐹𝐵)‘𝑥) ∈ 𝐴)))
2220, 21syl 14 . . . 4 (𝐹 Fn dom 𝐹 → (𝑥 ∈ ((𝐹𝐵) “ 𝐴) ↔ (𝑥 ∈ (𝐵 ∩ dom 𝐹) ∧ ((𝐹𝐵)‘𝑥) ∈ 𝐴)))
23 elin 3184 . . . . 5 (𝑥 ∈ ((𝐹𝐴) ∩ 𝐵) ↔ (𝑥 ∈ (𝐹𝐴) ∧ 𝑥𝐵))
24 elpreima 5432 . . . . . 6 (𝐹 Fn dom 𝐹 → (𝑥 ∈ (𝐹𝐴) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐴)))
2524anbi1d 454 . . . . 5 (𝐹 Fn dom 𝐹 → ((𝑥 ∈ (𝐹𝐴) ∧ 𝑥𝐵) ↔ ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐴) ∧ 𝑥𝐵)))
2623, 25syl5bb 191 . . . 4 (𝐹 Fn dom 𝐹 → (𝑥 ∈ ((𝐹𝐴) ∩ 𝐵) ↔ ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐴) ∧ 𝑥𝐵)))
2713, 22, 263bitr4d 219 . . 3 (𝐹 Fn dom 𝐹 → (𝑥 ∈ ((𝐹𝐵) “ 𝐴) ↔ 𝑥 ∈ ((𝐹𝐴) ∩ 𝐵)))
281, 27sylbi 120 . 2 (Fun 𝐹 → (𝑥 ∈ ((𝐹𝐵) “ 𝐴) ↔ 𝑥 ∈ ((𝐹𝐴) ∩ 𝐵)))
2928eqrdv 2087 1 (Fun 𝐹 → ((𝐹𝐵) “ 𝐴) = ((𝐹𝐴) ∩ 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1290  wcel 1439  cin 2999  ccnv 4451  dom cdm 4452  cres 4454  cima 4455  Fun wfun 5022   Fn wfn 5023  cfv 5028
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-v 2622  df-sbc 2842  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-br 3852  df-opab 3906  df-id 4129  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-rn 4463  df-res 4464  df-ima 4465  df-iota 4993  df-fun 5030  df-fn 5031  df-fv 5036
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator