ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f11o GIF version

Theorem f11o 5473
Description: Relationship between one-to-one and one-to-one onto function. (Contributed by NM, 4-Apr-1998.)
Hypothesis
Ref Expression
f11o.1 𝐹 ∈ V
Assertion
Ref Expression
f11o (𝐹:𝐴1-1𝐵 ↔ ∃𝑥(𝐹:𝐴1-1-onto𝑥𝑥𝐵))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴   𝑥,𝐵

Proof of Theorem f11o
StepHypRef Expression
1 f11o.1 . . . 4 𝐹 ∈ V
21ffoss 5472 . . 3 (𝐹:𝐴𝐵 ↔ ∃𝑥(𝐹:𝐴onto𝑥𝑥𝐵))
32anbi1i 455 . 2 ((𝐹:𝐴𝐵 ∧ Fun 𝐹) ↔ (∃𝑥(𝐹:𝐴onto𝑥𝑥𝐵) ∧ Fun 𝐹))
4 df-f1 5201 . 2 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ Fun 𝐹))
5 dff1o3 5446 . . . . . 6 (𝐹:𝐴1-1-onto𝑥 ↔ (𝐹:𝐴onto𝑥 ∧ Fun 𝐹))
65anbi1i 455 . . . . 5 ((𝐹:𝐴1-1-onto𝑥𝑥𝐵) ↔ ((𝐹:𝐴onto𝑥 ∧ Fun 𝐹) ∧ 𝑥𝐵))
7 an32 557 . . . . 5 (((𝐹:𝐴onto𝑥 ∧ Fun 𝐹) ∧ 𝑥𝐵) ↔ ((𝐹:𝐴onto𝑥𝑥𝐵) ∧ Fun 𝐹))
86, 7bitri 183 . . . 4 ((𝐹:𝐴1-1-onto𝑥𝑥𝐵) ↔ ((𝐹:𝐴onto𝑥𝑥𝐵) ∧ Fun 𝐹))
98exbii 1598 . . 3 (∃𝑥(𝐹:𝐴1-1-onto𝑥𝑥𝐵) ↔ ∃𝑥((𝐹:𝐴onto𝑥𝑥𝐵) ∧ Fun 𝐹))
10 19.41v 1895 . . 3 (∃𝑥((𝐹:𝐴onto𝑥𝑥𝐵) ∧ Fun 𝐹) ↔ (∃𝑥(𝐹:𝐴onto𝑥𝑥𝐵) ∧ Fun 𝐹))
119, 10bitri 183 . 2 (∃𝑥(𝐹:𝐴1-1-onto𝑥𝑥𝐵) ↔ (∃𝑥(𝐹:𝐴onto𝑥𝑥𝐵) ∧ Fun 𝐹))
123, 4, 113bitr4i 211 1 (𝐹:𝐴1-1𝐵 ↔ ∃𝑥(𝐹:𝐴1-1-onto𝑥𝑥𝐵))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  wex 1485  wcel 2141  Vcvv 2730  wss 3121  ccnv 4608  Fun wfun 5190  wf 5192  1-1wf1 5193  ontowfo 5194  1-1-ontowf1o 5195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-br 3988  df-opab 4049  df-cnv 4617  df-dm 4619  df-rn 4620  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203
This theorem is referenced by:  domen  6727
  Copyright terms: Public domain W3C validator