Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f11o | GIF version |
Description: Relationship between one-to-one and one-to-one onto function. (Contributed by NM, 4-Apr-1998.) |
Ref | Expression |
---|---|
f11o.1 | ⊢ 𝐹 ∈ V |
Ref | Expression |
---|---|
f11o | ⊢ (𝐹:𝐴–1-1→𝐵 ↔ ∃𝑥(𝐹:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f11o.1 | . . . 4 ⊢ 𝐹 ∈ V | |
2 | 1 | ffoss 5474 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 ↔ ∃𝑥(𝐹:𝐴–onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) |
3 | 2 | anbi1i 455 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹) ↔ (∃𝑥(𝐹:𝐴–onto→𝑥 ∧ 𝑥 ⊆ 𝐵) ∧ Fun ◡𝐹)) |
4 | df-f1 5203 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) | |
5 | dff1o3 5448 | . . . . . 6 ⊢ (𝐹:𝐴–1-1-onto→𝑥 ↔ (𝐹:𝐴–onto→𝑥 ∧ Fun ◡𝐹)) | |
6 | 5 | anbi1i 455 | . . . . 5 ⊢ ((𝐹:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵) ↔ ((𝐹:𝐴–onto→𝑥 ∧ Fun ◡𝐹) ∧ 𝑥 ⊆ 𝐵)) |
7 | an32 557 | . . . . 5 ⊢ (((𝐹:𝐴–onto→𝑥 ∧ Fun ◡𝐹) ∧ 𝑥 ⊆ 𝐵) ↔ ((𝐹:𝐴–onto→𝑥 ∧ 𝑥 ⊆ 𝐵) ∧ Fun ◡𝐹)) | |
8 | 6, 7 | bitri 183 | . . . 4 ⊢ ((𝐹:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵) ↔ ((𝐹:𝐴–onto→𝑥 ∧ 𝑥 ⊆ 𝐵) ∧ Fun ◡𝐹)) |
9 | 8 | exbii 1598 | . . 3 ⊢ (∃𝑥(𝐹:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵) ↔ ∃𝑥((𝐹:𝐴–onto→𝑥 ∧ 𝑥 ⊆ 𝐵) ∧ Fun ◡𝐹)) |
10 | 19.41v 1895 | . . 3 ⊢ (∃𝑥((𝐹:𝐴–onto→𝑥 ∧ 𝑥 ⊆ 𝐵) ∧ Fun ◡𝐹) ↔ (∃𝑥(𝐹:𝐴–onto→𝑥 ∧ 𝑥 ⊆ 𝐵) ∧ Fun ◡𝐹)) | |
11 | 9, 10 | bitri 183 | . 2 ⊢ (∃𝑥(𝐹:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵) ↔ (∃𝑥(𝐹:𝐴–onto→𝑥 ∧ 𝑥 ⊆ 𝐵) ∧ Fun ◡𝐹)) |
12 | 3, 4, 11 | 3bitr4i 211 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ ∃𝑥(𝐹:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∃wex 1485 ∈ wcel 2141 Vcvv 2730 ⊆ wss 3121 ◡ccnv 4610 Fun wfun 5192 ⟶wf 5194 –1-1→wf1 5195 –onto→wfo 5196 –1-1-onto→wf1o 5197 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-cnv 4619 df-dm 4621 df-rn 4622 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 |
This theorem is referenced by: domen 6729 |
Copyright terms: Public domain | W3C validator |