| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > f11o | GIF version | ||
| Description: Relationship between one-to-one and one-to-one onto function. (Contributed by NM, 4-Apr-1998.) | 
| Ref | Expression | 
|---|---|
| f11o.1 | ⊢ 𝐹 ∈ V | 
| Ref | Expression | 
|---|---|
| f11o | ⊢ (𝐹:𝐴–1-1→𝐵 ↔ ∃𝑥(𝐹:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | f11o.1 | . . . 4 ⊢ 𝐹 ∈ V | |
| 2 | 1 | ffoss 5536 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 ↔ ∃𝑥(𝐹:𝐴–onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) | 
| 3 | 2 | anbi1i 458 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹) ↔ (∃𝑥(𝐹:𝐴–onto→𝑥 ∧ 𝑥 ⊆ 𝐵) ∧ Fun ◡𝐹)) | 
| 4 | df-f1 5263 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) | |
| 5 | dff1o3 5510 | . . . . . 6 ⊢ (𝐹:𝐴–1-1-onto→𝑥 ↔ (𝐹:𝐴–onto→𝑥 ∧ Fun ◡𝐹)) | |
| 6 | 5 | anbi1i 458 | . . . . 5 ⊢ ((𝐹:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵) ↔ ((𝐹:𝐴–onto→𝑥 ∧ Fun ◡𝐹) ∧ 𝑥 ⊆ 𝐵)) | 
| 7 | an32 562 | . . . . 5 ⊢ (((𝐹:𝐴–onto→𝑥 ∧ Fun ◡𝐹) ∧ 𝑥 ⊆ 𝐵) ↔ ((𝐹:𝐴–onto→𝑥 ∧ 𝑥 ⊆ 𝐵) ∧ Fun ◡𝐹)) | |
| 8 | 6, 7 | bitri 184 | . . . 4 ⊢ ((𝐹:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵) ↔ ((𝐹:𝐴–onto→𝑥 ∧ 𝑥 ⊆ 𝐵) ∧ Fun ◡𝐹)) | 
| 9 | 8 | exbii 1619 | . . 3 ⊢ (∃𝑥(𝐹:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵) ↔ ∃𝑥((𝐹:𝐴–onto→𝑥 ∧ 𝑥 ⊆ 𝐵) ∧ Fun ◡𝐹)) | 
| 10 | 19.41v 1917 | . . 3 ⊢ (∃𝑥((𝐹:𝐴–onto→𝑥 ∧ 𝑥 ⊆ 𝐵) ∧ Fun ◡𝐹) ↔ (∃𝑥(𝐹:𝐴–onto→𝑥 ∧ 𝑥 ⊆ 𝐵) ∧ Fun ◡𝐹)) | |
| 11 | 9, 10 | bitri 184 | . 2 ⊢ (∃𝑥(𝐹:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵) ↔ (∃𝑥(𝐹:𝐴–onto→𝑥 ∧ 𝑥 ⊆ 𝐵) ∧ Fun ◡𝐹)) | 
| 12 | 3, 4, 11 | 3bitr4i 212 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ ∃𝑥(𝐹:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) | 
| Colors of variables: wff set class | 
| Syntax hints: ∧ wa 104 ↔ wb 105 ∃wex 1506 ∈ wcel 2167 Vcvv 2763 ⊆ wss 3157 ◡ccnv 4662 Fun wfun 5252 ⟶wf 5254 –1-1→wf1 5255 –onto→wfo 5256 –1-1-onto→wf1o 5257 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-cnv 4671 df-dm 4673 df-rn 4674 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 | 
| This theorem is referenced by: domen 6810 | 
| Copyright terms: Public domain | W3C validator |