| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f11o | GIF version | ||
| Description: Relationship between one-to-one and one-to-one onto function. (Contributed by NM, 4-Apr-1998.) |
| Ref | Expression |
|---|---|
| f11o.1 | ⊢ 𝐹 ∈ V |
| Ref | Expression |
|---|---|
| f11o | ⊢ (𝐹:𝐴–1-1→𝐵 ↔ ∃𝑥(𝐹:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f11o.1 | . . . 4 ⊢ 𝐹 ∈ V | |
| 2 | 1 | ffoss 5606 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 ↔ ∃𝑥(𝐹:𝐴–onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) |
| 3 | 2 | anbi1i 458 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹) ↔ (∃𝑥(𝐹:𝐴–onto→𝑥 ∧ 𝑥 ⊆ 𝐵) ∧ Fun ◡𝐹)) |
| 4 | df-f1 5323 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) | |
| 5 | dff1o3 5580 | . . . . . 6 ⊢ (𝐹:𝐴–1-1-onto→𝑥 ↔ (𝐹:𝐴–onto→𝑥 ∧ Fun ◡𝐹)) | |
| 6 | 5 | anbi1i 458 | . . . . 5 ⊢ ((𝐹:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵) ↔ ((𝐹:𝐴–onto→𝑥 ∧ Fun ◡𝐹) ∧ 𝑥 ⊆ 𝐵)) |
| 7 | an32 562 | . . . . 5 ⊢ (((𝐹:𝐴–onto→𝑥 ∧ Fun ◡𝐹) ∧ 𝑥 ⊆ 𝐵) ↔ ((𝐹:𝐴–onto→𝑥 ∧ 𝑥 ⊆ 𝐵) ∧ Fun ◡𝐹)) | |
| 8 | 6, 7 | bitri 184 | . . . 4 ⊢ ((𝐹:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵) ↔ ((𝐹:𝐴–onto→𝑥 ∧ 𝑥 ⊆ 𝐵) ∧ Fun ◡𝐹)) |
| 9 | 8 | exbii 1651 | . . 3 ⊢ (∃𝑥(𝐹:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵) ↔ ∃𝑥((𝐹:𝐴–onto→𝑥 ∧ 𝑥 ⊆ 𝐵) ∧ Fun ◡𝐹)) |
| 10 | 19.41v 1949 | . . 3 ⊢ (∃𝑥((𝐹:𝐴–onto→𝑥 ∧ 𝑥 ⊆ 𝐵) ∧ Fun ◡𝐹) ↔ (∃𝑥(𝐹:𝐴–onto→𝑥 ∧ 𝑥 ⊆ 𝐵) ∧ Fun ◡𝐹)) | |
| 11 | 9, 10 | bitri 184 | . 2 ⊢ (∃𝑥(𝐹:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵) ↔ (∃𝑥(𝐹:𝐴–onto→𝑥 ∧ 𝑥 ⊆ 𝐵) ∧ Fun ◡𝐹)) |
| 12 | 3, 4, 11 | 3bitr4i 212 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ ∃𝑥(𝐹:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∃wex 1538 ∈ wcel 2200 Vcvv 2799 ⊆ wss 3197 ◡ccnv 4718 Fun wfun 5312 ⟶wf 5314 –1-1→wf1 5315 –onto→wfo 5316 –1-1-onto→wf1o 5317 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-cnv 4727 df-dm 4729 df-rn 4730 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 |
| This theorem is referenced by: domen 6908 |
| Copyright terms: Public domain | W3C validator |