![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elcncf1di | GIF version |
Description: Membership in the set of continuous complex functions from 𝐴 to 𝐵. (Contributed by Paul Chapman, 26-Nov-2007.) |
Ref | Expression |
---|---|
elcncf1d.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
elcncf1d.2 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+) → 𝑍 ∈ ℝ+)) |
elcncf1d.3 | ⊢ (𝜑 → (((𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ 𝑦 ∈ ℝ+) → ((abs‘(𝑥 − 𝑤)) < 𝑍 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦))) |
Ref | Expression |
---|---|
elcncf1di | ⊢ (𝜑 → ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐹 ∈ (𝐴–cn→𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elcncf1d.1 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | elcncf1d.2 | . . . . . 6 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+) → 𝑍 ∈ ℝ+)) | |
3 | 2 | imp 124 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+)) → 𝑍 ∈ ℝ+) |
4 | an32 562 | . . . . . . . . 9 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ 𝑦 ∈ ℝ+) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+) ∧ 𝑤 ∈ 𝐴)) | |
5 | 4 | anbi2i 457 | . . . . . . . 8 ⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ 𝑦 ∈ ℝ+)) ↔ (𝜑 ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+) ∧ 𝑤 ∈ 𝐴))) |
6 | anass 401 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ 𝐴) ↔ (𝜑 ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+) ∧ 𝑤 ∈ 𝐴))) | |
7 | 5, 6 | bitr4i 187 | . . . . . . 7 ⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ 𝑦 ∈ ℝ+)) ↔ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ 𝐴)) |
8 | elcncf1d.3 | . . . . . . . 8 ⊢ (𝜑 → (((𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ 𝑦 ∈ ℝ+) → ((abs‘(𝑥 − 𝑤)) < 𝑍 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦))) | |
9 | 8 | imp 124 | . . . . . . 7 ⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ 𝑦 ∈ ℝ+)) → ((abs‘(𝑥 − 𝑤)) < 𝑍 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)) |
10 | 7, 9 | sylbir 135 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ 𝐴) → ((abs‘(𝑥 − 𝑤)) < 𝑍 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)) |
11 | 10 | ralrimiva 2563 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+)) → ∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑍 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)) |
12 | breq2 4022 | . . . . . 6 ⊢ (𝑧 = 𝑍 → ((abs‘(𝑥 − 𝑤)) < 𝑧 ↔ (abs‘(𝑥 − 𝑤)) < 𝑍)) | |
13 | 12 | rspceaimv 2864 | . . . . 5 ⊢ ((𝑍 ∈ ℝ+ ∧ ∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑍 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)) → ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)) |
14 | 3, 11, 13 | syl2anc 411 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+)) → ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)) |
15 | 14 | ralrimivva 2572 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)) |
16 | 1, 15 | jca 306 | . 2 ⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦))) |
17 | elcncf 14537 | . 2 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐴–cn→𝐵) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)))) | |
18 | 16, 17 | syl5ibrcom 157 | 1 ⊢ (𝜑 → ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐹 ∈ (𝐴–cn→𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2160 ∀wral 2468 ∃wrex 2469 ⊆ wss 3144 class class class wbr 4018 ⟶wf 5231 ‘cfv 5235 (class class class)co 5897 ℂcc 7840 < clt 8023 − cmin 8159 ℝ+crp 9685 abscabs 11041 –cn→ccncf 14534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-cnex 7933 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-rab 2477 df-v 2754 df-sbc 2978 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-opab 4080 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-fv 5243 df-ov 5900 df-oprab 5901 df-mpo 5902 df-map 6677 df-cncf 14535 |
This theorem is referenced by: elcncf1ii 14544 cncfmptc 14559 cncfmptid 14560 addccncf 14563 negcncf 14565 |
Copyright terms: Public domain | W3C validator |