ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elcncf1di GIF version

Theorem elcncf1di 12347
Description: Membership in the set of continuous complex functions from 𝐴 to 𝐵. (Contributed by Paul Chapman, 26-Nov-2007.)
Hypotheses
Ref Expression
elcncf1d.1 (𝜑𝐹:𝐴𝐵)
elcncf1d.2 (𝜑 → ((𝑥𝐴𝑦 ∈ ℝ+) → 𝑍 ∈ ℝ+))
elcncf1d.3 (𝜑 → (((𝑥𝐴𝑤𝐴) ∧ 𝑦 ∈ ℝ+) → ((abs‘(𝑥𝑤)) < 𝑍 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦)))
Assertion
Ref Expression
elcncf1di (𝜑 → ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐹 ∈ (𝐴cn𝐵)))
Distinct variable groups:   𝑥,𝑤,𝑦,𝐴   𝑤,𝐵,𝑥,𝑦   𝑤,𝐹,𝑥,𝑦   𝜑,𝑤,𝑥,𝑦   𝑤,𝑍
Allowed substitution hints:   𝑍(𝑥,𝑦)

Proof of Theorem elcncf1di
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elcncf1d.1 . . 3 (𝜑𝐹:𝐴𝐵)
2 elcncf1d.2 . . . . . 6 (𝜑 → ((𝑥𝐴𝑦 ∈ ℝ+) → 𝑍 ∈ ℝ+))
32imp 123 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) → 𝑍 ∈ ℝ+)
4 an32 530 . . . . . . . . 9 (((𝑥𝐴𝑤𝐴) ∧ 𝑦 ∈ ℝ+) ↔ ((𝑥𝐴𝑦 ∈ ℝ+) ∧ 𝑤𝐴))
54anbi2i 446 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐴𝑤𝐴) ∧ 𝑦 ∈ ℝ+)) ↔ (𝜑 ∧ ((𝑥𝐴𝑦 ∈ ℝ+) ∧ 𝑤𝐴)))
6 anass 394 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑤𝐴) ↔ (𝜑 ∧ ((𝑥𝐴𝑦 ∈ ℝ+) ∧ 𝑤𝐴)))
75, 6bitr4i 186 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐴𝑤𝐴) ∧ 𝑦 ∈ ℝ+)) ↔ ((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑤𝐴))
8 elcncf1d.3 . . . . . . . 8 (𝜑 → (((𝑥𝐴𝑤𝐴) ∧ 𝑦 ∈ ℝ+) → ((abs‘(𝑥𝑤)) < 𝑍 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦)))
98imp 123 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐴𝑤𝐴) ∧ 𝑦 ∈ ℝ+)) → ((abs‘(𝑥𝑤)) < 𝑍 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))
107, 9sylbir 134 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑤𝐴) → ((abs‘(𝑥𝑤)) < 𝑍 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))
1110ralrimiva 2458 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) → ∀𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑍 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))
12 breq2 3871 . . . . . 6 (𝑧 = 𝑍 → ((abs‘(𝑥𝑤)) < 𝑧 ↔ (abs‘(𝑥𝑤)) < 𝑍))
1312rspceaimv 2743 . . . . 5 ((𝑍 ∈ ℝ+ ∧ ∀𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑍 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦)) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))
143, 11, 13syl2anc 404 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))
1514ralrimivva 2467 . . 3 (𝜑 → ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))
161, 15jca 301 . 2 (𝜑 → (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦)))
17 elcncf 12341 . 2 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐴cn𝐵) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))))
1816, 17syl5ibrcom 156 1 (𝜑 → ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐹 ∈ (𝐴cn𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 1445  wral 2370  wrex 2371  wss 3013   class class class wbr 3867  wf 5045  cfv 5049  (class class class)co 5690  cc 7445   < clt 7619  cmin 7750  +crp 9233  abscabs 10561  cnccncf 12338
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-cnex 7533
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-ral 2375  df-rex 2376  df-rab 2379  df-v 2635  df-sbc 2855  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-br 3868  df-opab 3922  df-id 4144  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-fv 5057  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-map 6447  df-cncf 12339
This theorem is referenced by:  elcncf1ii  12348
  Copyright terms: Public domain W3C validator