![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elcncf1di | GIF version |
Description: Membership in the set of continuous complex functions from 𝐴 to 𝐵. (Contributed by Paul Chapman, 26-Nov-2007.) |
Ref | Expression |
---|---|
elcncf1d.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
elcncf1d.2 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+) → 𝑍 ∈ ℝ+)) |
elcncf1d.3 | ⊢ (𝜑 → (((𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ 𝑦 ∈ ℝ+) → ((abs‘(𝑥 − 𝑤)) < 𝑍 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦))) |
Ref | Expression |
---|---|
elcncf1di | ⊢ (𝜑 → ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐹 ∈ (𝐴–cn→𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elcncf1d.1 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | elcncf1d.2 | . . . . . 6 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+) → 𝑍 ∈ ℝ+)) | |
3 | 2 | imp 123 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+)) → 𝑍 ∈ ℝ+) |
4 | an32 530 | . . . . . . . . 9 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ 𝑦 ∈ ℝ+) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+) ∧ 𝑤 ∈ 𝐴)) | |
5 | 4 | anbi2i 446 | . . . . . . . 8 ⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ 𝑦 ∈ ℝ+)) ↔ (𝜑 ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+) ∧ 𝑤 ∈ 𝐴))) |
6 | anass 394 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ 𝐴) ↔ (𝜑 ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+) ∧ 𝑤 ∈ 𝐴))) | |
7 | 5, 6 | bitr4i 186 | . . . . . . 7 ⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ 𝑦 ∈ ℝ+)) ↔ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ 𝐴)) |
8 | elcncf1d.3 | . . . . . . . 8 ⊢ (𝜑 → (((𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ 𝑦 ∈ ℝ+) → ((abs‘(𝑥 − 𝑤)) < 𝑍 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦))) | |
9 | 8 | imp 123 | . . . . . . 7 ⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ 𝑦 ∈ ℝ+)) → ((abs‘(𝑥 − 𝑤)) < 𝑍 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)) |
10 | 7, 9 | sylbir 134 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ 𝐴) → ((abs‘(𝑥 − 𝑤)) < 𝑍 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)) |
11 | 10 | ralrimiva 2458 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+)) → ∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑍 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)) |
12 | breq2 3871 | . . . . . 6 ⊢ (𝑧 = 𝑍 → ((abs‘(𝑥 − 𝑤)) < 𝑧 ↔ (abs‘(𝑥 − 𝑤)) < 𝑍)) | |
13 | 12 | rspceaimv 2743 | . . . . 5 ⊢ ((𝑍 ∈ ℝ+ ∧ ∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑍 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)) → ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)) |
14 | 3, 11, 13 | syl2anc 404 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+)) → ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)) |
15 | 14 | ralrimivva 2467 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)) |
16 | 1, 15 | jca 301 | . 2 ⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦))) |
17 | elcncf 12341 | . 2 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐴–cn→𝐵) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)))) | |
18 | 16, 17 | syl5ibrcom 156 | 1 ⊢ (𝜑 → ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐹 ∈ (𝐴–cn→𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 1445 ∀wral 2370 ∃wrex 2371 ⊆ wss 3013 class class class wbr 3867 ⟶wf 5045 ‘cfv 5049 (class class class)co 5690 ℂcc 7445 < clt 7619 − cmin 7750 ℝ+crp 9233 abscabs 10561 –cn→ccncf 12338 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-pow 4030 ax-pr 4060 ax-un 4284 ax-setind 4381 ax-cnex 7533 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-fal 1302 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ne 2263 df-ral 2375 df-rex 2376 df-rab 2379 df-v 2635 df-sbc 2855 df-dif 3015 df-un 3017 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-br 3868 df-opab 3922 df-id 4144 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-dm 4477 df-rn 4478 df-iota 5014 df-fun 5051 df-fn 5052 df-f 5053 df-fv 5057 df-ov 5693 df-oprab 5694 df-mpt2 5695 df-map 6447 df-cncf 12339 |
This theorem is referenced by: elcncf1ii 12348 |
Copyright terms: Public domain | W3C validator |