ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elcncf1di GIF version

Theorem elcncf1di 14734
Description: Membership in the set of continuous complex functions from 𝐴 to 𝐵. (Contributed by Paul Chapman, 26-Nov-2007.)
Hypotheses
Ref Expression
elcncf1d.1 (𝜑𝐹:𝐴𝐵)
elcncf1d.2 (𝜑 → ((𝑥𝐴𝑦 ∈ ℝ+) → 𝑍 ∈ ℝ+))
elcncf1d.3 (𝜑 → (((𝑥𝐴𝑤𝐴) ∧ 𝑦 ∈ ℝ+) → ((abs‘(𝑥𝑤)) < 𝑍 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦)))
Assertion
Ref Expression
elcncf1di (𝜑 → ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐹 ∈ (𝐴cn𝐵)))
Distinct variable groups:   𝑥,𝑤,𝑦,𝐴   𝑤,𝐵,𝑥,𝑦   𝑤,𝐹,𝑥,𝑦   𝜑,𝑤,𝑥,𝑦   𝑤,𝑍
Allowed substitution hints:   𝑍(𝑥,𝑦)

Proof of Theorem elcncf1di
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elcncf1d.1 . . 3 (𝜑𝐹:𝐴𝐵)
2 elcncf1d.2 . . . . . 6 (𝜑 → ((𝑥𝐴𝑦 ∈ ℝ+) → 𝑍 ∈ ℝ+))
32imp 124 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) → 𝑍 ∈ ℝ+)
4 an32 562 . . . . . . . . 9 (((𝑥𝐴𝑤𝐴) ∧ 𝑦 ∈ ℝ+) ↔ ((𝑥𝐴𝑦 ∈ ℝ+) ∧ 𝑤𝐴))
54anbi2i 457 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐴𝑤𝐴) ∧ 𝑦 ∈ ℝ+)) ↔ (𝜑 ∧ ((𝑥𝐴𝑦 ∈ ℝ+) ∧ 𝑤𝐴)))
6 anass 401 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑤𝐴) ↔ (𝜑 ∧ ((𝑥𝐴𝑦 ∈ ℝ+) ∧ 𝑤𝐴)))
75, 6bitr4i 187 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐴𝑤𝐴) ∧ 𝑦 ∈ ℝ+)) ↔ ((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑤𝐴))
8 elcncf1d.3 . . . . . . . 8 (𝜑 → (((𝑥𝐴𝑤𝐴) ∧ 𝑦 ∈ ℝ+) → ((abs‘(𝑥𝑤)) < 𝑍 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦)))
98imp 124 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐴𝑤𝐴) ∧ 𝑦 ∈ ℝ+)) → ((abs‘(𝑥𝑤)) < 𝑍 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))
107, 9sylbir 135 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑤𝐴) → ((abs‘(𝑥𝑤)) < 𝑍 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))
1110ralrimiva 2567 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) → ∀𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑍 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))
12 breq2 4033 . . . . . 6 (𝑧 = 𝑍 → ((abs‘(𝑥𝑤)) < 𝑧 ↔ (abs‘(𝑥𝑤)) < 𝑍))
1312rspceaimv 2872 . . . . 5 ((𝑍 ∈ ℝ+ ∧ ∀𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑍 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦)) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))
143, 11, 13syl2anc 411 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))
1514ralrimivva 2576 . . 3 (𝜑 → ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))
161, 15jca 306 . 2 (𝜑 → (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦)))
17 elcncf 14728 . 2 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐴cn𝐵) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))))
1816, 17syl5ibrcom 157 1 (𝜑 → ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐹 ∈ (𝐴cn𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2164  wral 2472  wrex 2473  wss 3153   class class class wbr 4029  wf 5250  cfv 5254  (class class class)co 5918  cc 7870   < clt 8054  cmin 8190  +crp 9719  abscabs 11141  cnccncf 14725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-map 6704  df-cncf 14726
This theorem is referenced by:  elcncf1ii  14735  cncfmptc  14750  cncfmptid  14751  addccncf  14754  negcncf  14759
  Copyright terms: Public domain W3C validator