ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elcncf1di GIF version

Theorem elcncf1di 13360
Description: Membership in the set of continuous complex functions from 𝐴 to 𝐵. (Contributed by Paul Chapman, 26-Nov-2007.)
Hypotheses
Ref Expression
elcncf1d.1 (𝜑𝐹:𝐴𝐵)
elcncf1d.2 (𝜑 → ((𝑥𝐴𝑦 ∈ ℝ+) → 𝑍 ∈ ℝ+))
elcncf1d.3 (𝜑 → (((𝑥𝐴𝑤𝐴) ∧ 𝑦 ∈ ℝ+) → ((abs‘(𝑥𝑤)) < 𝑍 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦)))
Assertion
Ref Expression
elcncf1di (𝜑 → ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐹 ∈ (𝐴cn𝐵)))
Distinct variable groups:   𝑥,𝑤,𝑦,𝐴   𝑤,𝐵,𝑥,𝑦   𝑤,𝐹,𝑥,𝑦   𝜑,𝑤,𝑥,𝑦   𝑤,𝑍
Allowed substitution hints:   𝑍(𝑥,𝑦)

Proof of Theorem elcncf1di
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elcncf1d.1 . . 3 (𝜑𝐹:𝐴𝐵)
2 elcncf1d.2 . . . . . 6 (𝜑 → ((𝑥𝐴𝑦 ∈ ℝ+) → 𝑍 ∈ ℝ+))
32imp 123 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) → 𝑍 ∈ ℝ+)
4 an32 557 . . . . . . . . 9 (((𝑥𝐴𝑤𝐴) ∧ 𝑦 ∈ ℝ+) ↔ ((𝑥𝐴𝑦 ∈ ℝ+) ∧ 𝑤𝐴))
54anbi2i 454 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐴𝑤𝐴) ∧ 𝑦 ∈ ℝ+)) ↔ (𝜑 ∧ ((𝑥𝐴𝑦 ∈ ℝ+) ∧ 𝑤𝐴)))
6 anass 399 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑤𝐴) ↔ (𝜑 ∧ ((𝑥𝐴𝑦 ∈ ℝ+) ∧ 𝑤𝐴)))
75, 6bitr4i 186 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐴𝑤𝐴) ∧ 𝑦 ∈ ℝ+)) ↔ ((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑤𝐴))
8 elcncf1d.3 . . . . . . . 8 (𝜑 → (((𝑥𝐴𝑤𝐴) ∧ 𝑦 ∈ ℝ+) → ((abs‘(𝑥𝑤)) < 𝑍 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦)))
98imp 123 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐴𝑤𝐴) ∧ 𝑦 ∈ ℝ+)) → ((abs‘(𝑥𝑤)) < 𝑍 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))
107, 9sylbir 134 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑤𝐴) → ((abs‘(𝑥𝑤)) < 𝑍 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))
1110ralrimiva 2543 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) → ∀𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑍 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))
12 breq2 3993 . . . . . 6 (𝑧 = 𝑍 → ((abs‘(𝑥𝑤)) < 𝑧 ↔ (abs‘(𝑥𝑤)) < 𝑍))
1312rspceaimv 2842 . . . . 5 ((𝑍 ∈ ℝ+ ∧ ∀𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑍 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦)) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))
143, 11, 13syl2anc 409 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))
1514ralrimivva 2552 . . 3 (𝜑 → ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))
161, 15jca 304 . 2 (𝜑 → (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦)))
17 elcncf 13354 . 2 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐴cn𝐵) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))))
1816, 17syl5ibrcom 156 1 (𝜑 → ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐹 ∈ (𝐴cn𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 2141  wral 2448  wrex 2449  wss 3121   class class class wbr 3989  wf 5194  cfv 5198  (class class class)co 5853  cc 7772   < clt 7954  cmin 8090  +crp 9610  abscabs 10961  cnccncf 13351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-map 6628  df-cncf 13352
This theorem is referenced by:  elcncf1ii  13361  cncfmptc  13376  cncfmptid  13377  addccncf  13380  negcncf  13382
  Copyright terms: Public domain W3C validator