ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inrab2 GIF version

Theorem inrab2 3380
Description: Intersection with a restricted class abstraction. (Contributed by NM, 19-Nov-2007.)
Assertion
Ref Expression
inrab2 ({𝑥𝐴𝜑} ∩ 𝐵) = {𝑥 ∈ (𝐴𝐵) ∣ 𝜑}
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem inrab2
StepHypRef Expression
1 df-rab 2444 . . 3 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
2 abid2 2278 . . . 4 {𝑥𝑥𝐵} = 𝐵
32eqcomi 2161 . . 3 𝐵 = {𝑥𝑥𝐵}
41, 3ineq12i 3306 . 2 ({𝑥𝐴𝜑} ∩ 𝐵) = ({𝑥 ∣ (𝑥𝐴𝜑)} ∩ {𝑥𝑥𝐵})
5 df-rab 2444 . . 3 {𝑥 ∈ (𝐴𝐵) ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ (𝐴𝐵) ∧ 𝜑)}
6 inab 3375 . . . 4 ({𝑥 ∣ (𝑥𝐴𝜑)} ∩ {𝑥𝑥𝐵}) = {𝑥 ∣ ((𝑥𝐴𝜑) ∧ 𝑥𝐵)}
7 elin 3290 . . . . . . 7 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
87anbi1i 454 . . . . . 6 ((𝑥 ∈ (𝐴𝐵) ∧ 𝜑) ↔ ((𝑥𝐴𝑥𝐵) ∧ 𝜑))
9 an32 552 . . . . . 6 (((𝑥𝐴𝑥𝐵) ∧ 𝜑) ↔ ((𝑥𝐴𝜑) ∧ 𝑥𝐵))
108, 9bitri 183 . . . . 5 ((𝑥 ∈ (𝐴𝐵) ∧ 𝜑) ↔ ((𝑥𝐴𝜑) ∧ 𝑥𝐵))
1110abbii 2273 . . . 4 {𝑥 ∣ (𝑥 ∈ (𝐴𝐵) ∧ 𝜑)} = {𝑥 ∣ ((𝑥𝐴𝜑) ∧ 𝑥𝐵)}
126, 11eqtr4i 2181 . . 3 ({𝑥 ∣ (𝑥𝐴𝜑)} ∩ {𝑥𝑥𝐵}) = {𝑥 ∣ (𝑥 ∈ (𝐴𝐵) ∧ 𝜑)}
135, 12eqtr4i 2181 . 2 {𝑥 ∈ (𝐴𝐵) ∣ 𝜑} = ({𝑥 ∣ (𝑥𝐴𝜑)} ∩ {𝑥𝑥𝐵})
144, 13eqtr4i 2181 1 ({𝑥𝐴𝜑} ∩ 𝐵) = {𝑥 ∈ (𝐴𝐵) ∣ 𝜑}
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1335  wcel 2128  {cab 2143  {crab 2439  cin 3101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-rab 2444  df-v 2714  df-in 3108
This theorem is referenced by:  iooval2  9820  fzval2  9916  dfphi2  12099  znnen  12169
  Copyright terms: Public domain W3C validator