![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > inrab2 | GIF version |
Description: Intersection with a restricted class abstraction. (Contributed by NM, 19-Nov-2007.) |
Ref | Expression |
---|---|
inrab2 | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ 𝐵) = {𝑥 ∈ (𝐴 ∩ 𝐵) ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 2481 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
2 | abid2 2314 | . . . 4 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐵} = 𝐵 | |
3 | 2 | eqcomi 2197 | . . 3 ⊢ 𝐵 = {𝑥 ∣ 𝑥 ∈ 𝐵} |
4 | 1, 3 | ineq12i 3358 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ 𝐵) = ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∩ {𝑥 ∣ 𝑥 ∈ 𝐵}) |
5 | df-rab 2481 | . . 3 ⊢ {𝑥 ∈ (𝐴 ∩ 𝐵) ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ (𝐴 ∩ 𝐵) ∧ 𝜑)} | |
6 | inab 3427 | . . . 4 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∩ {𝑥 ∣ 𝑥 ∈ 𝐵}) = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝑥 ∈ 𝐵)} | |
7 | elin 3342 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
8 | 7 | anbi1i 458 | . . . . . 6 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ 𝜑)) |
9 | an32 562 | . . . . . 6 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝑥 ∈ 𝐵)) | |
10 | 8, 9 | bitri 184 | . . . . 5 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝑥 ∈ 𝐵)) |
11 | 10 | abbii 2309 | . . . 4 ⊢ {𝑥 ∣ (𝑥 ∈ (𝐴 ∩ 𝐵) ∧ 𝜑)} = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝑥 ∈ 𝐵)} |
12 | 6, 11 | eqtr4i 2217 | . . 3 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∩ {𝑥 ∣ 𝑥 ∈ 𝐵}) = {𝑥 ∣ (𝑥 ∈ (𝐴 ∩ 𝐵) ∧ 𝜑)} |
13 | 5, 12 | eqtr4i 2217 | . 2 ⊢ {𝑥 ∈ (𝐴 ∩ 𝐵) ∣ 𝜑} = ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∩ {𝑥 ∣ 𝑥 ∈ 𝐵}) |
14 | 4, 13 | eqtr4i 2217 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ 𝐵) = {𝑥 ∈ (𝐴 ∩ 𝐵) ∣ 𝜑} |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1364 ∈ wcel 2164 {cab 2179 {crab 2476 ∩ cin 3152 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rab 2481 df-v 2762 df-in 3159 |
This theorem is referenced by: iooval2 9981 fzval2 10077 dfphi2 12358 znnen 12555 |
Copyright terms: Public domain | W3C validator |