| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > inrab2 | GIF version | ||
| Description: Intersection with a restricted class abstraction. (Contributed by NM, 19-Nov-2007.) |
| Ref | Expression |
|---|---|
| inrab2 | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ 𝐵) = {𝑥 ∈ (𝐴 ∩ 𝐵) ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab 2494 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 2 | abid2 2327 | . . . 4 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐵} = 𝐵 | |
| 3 | 2 | eqcomi 2210 | . . 3 ⊢ 𝐵 = {𝑥 ∣ 𝑥 ∈ 𝐵} |
| 4 | 1, 3 | ineq12i 3376 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ 𝐵) = ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∩ {𝑥 ∣ 𝑥 ∈ 𝐵}) |
| 5 | df-rab 2494 | . . 3 ⊢ {𝑥 ∈ (𝐴 ∩ 𝐵) ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ (𝐴 ∩ 𝐵) ∧ 𝜑)} | |
| 6 | inab 3445 | . . . 4 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∩ {𝑥 ∣ 𝑥 ∈ 𝐵}) = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝑥 ∈ 𝐵)} | |
| 7 | elin 3360 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
| 8 | 7 | anbi1i 458 | . . . . . 6 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ 𝜑)) |
| 9 | an32 562 | . . . . . 6 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝑥 ∈ 𝐵)) | |
| 10 | 8, 9 | bitri 184 | . . . . 5 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝑥 ∈ 𝐵)) |
| 11 | 10 | abbii 2322 | . . . 4 ⊢ {𝑥 ∣ (𝑥 ∈ (𝐴 ∩ 𝐵) ∧ 𝜑)} = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝑥 ∈ 𝐵)} |
| 12 | 6, 11 | eqtr4i 2230 | . . 3 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∩ {𝑥 ∣ 𝑥 ∈ 𝐵}) = {𝑥 ∣ (𝑥 ∈ (𝐴 ∩ 𝐵) ∧ 𝜑)} |
| 13 | 5, 12 | eqtr4i 2230 | . 2 ⊢ {𝑥 ∈ (𝐴 ∩ 𝐵) ∣ 𝜑} = ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∩ {𝑥 ∣ 𝑥 ∈ 𝐵}) |
| 14 | 4, 13 | eqtr4i 2230 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ 𝐵) = {𝑥 ∈ (𝐴 ∩ 𝐵) ∣ 𝜑} |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1373 ∈ wcel 2177 {cab 2192 {crab 2489 ∩ cin 3169 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rab 2494 df-v 2775 df-in 3176 |
| This theorem is referenced by: iooval2 10057 fzval2 10153 dfphi2 12617 znnen 12844 |
| Copyright terms: Public domain | W3C validator |