![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > inrab2 | GIF version |
Description: Intersection with a restricted class abstraction. (Contributed by NM, 19-Nov-2007.) |
Ref | Expression |
---|---|
inrab2 | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ 𝐵) = {𝑥 ∈ (𝐴 ∩ 𝐵) ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 2369 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
2 | abid2 2209 | . . . 4 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐵} = 𝐵 | |
3 | 2 | eqcomi 2093 | . . 3 ⊢ 𝐵 = {𝑥 ∣ 𝑥 ∈ 𝐵} |
4 | 1, 3 | ineq12i 3200 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ 𝐵) = ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∩ {𝑥 ∣ 𝑥 ∈ 𝐵}) |
5 | df-rab 2369 | . . 3 ⊢ {𝑥 ∈ (𝐴 ∩ 𝐵) ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ (𝐴 ∩ 𝐵) ∧ 𝜑)} | |
6 | inab 3268 | . . . 4 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∩ {𝑥 ∣ 𝑥 ∈ 𝐵}) = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝑥 ∈ 𝐵)} | |
7 | elin 3184 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
8 | 7 | anbi1i 447 | . . . . . 6 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ 𝜑)) |
9 | an32 530 | . . . . . 6 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝑥 ∈ 𝐵)) | |
10 | 8, 9 | bitri 183 | . . . . 5 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝑥 ∈ 𝐵)) |
11 | 10 | abbii 2204 | . . . 4 ⊢ {𝑥 ∣ (𝑥 ∈ (𝐴 ∩ 𝐵) ∧ 𝜑)} = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝑥 ∈ 𝐵)} |
12 | 6, 11 | eqtr4i 2112 | . . 3 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∩ {𝑥 ∣ 𝑥 ∈ 𝐵}) = {𝑥 ∣ (𝑥 ∈ (𝐴 ∩ 𝐵) ∧ 𝜑)} |
13 | 5, 12 | eqtr4i 2112 | . 2 ⊢ {𝑥 ∈ (𝐴 ∩ 𝐵) ∣ 𝜑} = ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∩ {𝑥 ∣ 𝑥 ∈ 𝐵}) |
14 | 4, 13 | eqtr4i 2112 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ 𝐵) = {𝑥 ∈ (𝐴 ∩ 𝐵) ∣ 𝜑} |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1290 ∈ wcel 1439 {cab 2075 {crab 2364 ∩ cin 2999 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-tru 1293 df-nf 1396 df-sb 1694 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-rab 2369 df-v 2622 df-in 3006 |
This theorem is referenced by: iooval2 9394 fzval2 9488 dfphi2 11535 znnen 11550 |
Copyright terms: Public domain | W3C validator |