ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcqcl GIF version

Theorem pcqcl 12197
Description: Closure of the general prime count function. (Contributed by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
pcqcl ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → (𝑃 pCnt 𝑁) ∈ ℤ)

Proof of Theorem pcqcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 521 . . 3 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → 𝑁 ∈ ℚ)
2 elq 9538 . . 3 (𝑁 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑁 = (𝑥 / 𝑦))
31, 2sylib 121 . 2 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑁 = (𝑥 / 𝑦))
4 nncn 8847 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
5 nnap0 8868 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → 𝑦 # 0)
64, 5div0apd 8665 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (0 / 𝑦) = 0)
76ad2antll 483 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (0 / 𝑦) = 0)
8 oveq1 5834 . . . . . . . . . . 11 (𝑥 = 0 → (𝑥 / 𝑦) = (0 / 𝑦))
98eqeq1d 2166 . . . . . . . . . 10 (𝑥 = 0 → ((𝑥 / 𝑦) = 0 ↔ (0 / 𝑦) = 0))
107, 9syl5ibrcom 156 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝑥 = 0 → (𝑥 / 𝑦) = 0))
1110necon3d 2371 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → ((𝑥 / 𝑦) ≠ 0 → 𝑥 ≠ 0))
12 an32 552 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) ↔ ((𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ 𝑦 ∈ ℕ))
13 pcdiv 12193 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt (𝑥 / 𝑦)) = ((𝑃 pCnt 𝑥) − (𝑃 pCnt 𝑦)))
14 pczcl 12189 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → (𝑃 pCnt 𝑥) ∈ ℕ0)
1514nn0zd 9290 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → (𝑃 pCnt 𝑥) ∈ ℤ)
16153adant3 1002 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt 𝑥) ∈ ℤ)
17 nnz 9192 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
18 nnne0 8867 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ → 𝑦 ≠ 0)
1917, 18jca 304 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → (𝑦 ∈ ℤ ∧ 𝑦 ≠ 0))
20 pczcl 12189 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ (𝑦 ∈ ℤ ∧ 𝑦 ≠ 0)) → (𝑃 pCnt 𝑦) ∈ ℕ0)
2120nn0zd 9290 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℙ ∧ (𝑦 ∈ ℤ ∧ 𝑦 ≠ 0)) → (𝑃 pCnt 𝑦) ∈ ℤ)
2219, 21sylan2 284 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt 𝑦) ∈ ℤ)
23223adant2 1001 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt 𝑦) ∈ ℤ)
2416, 23zsubcld 9297 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ 𝑦 ∈ ℕ) → ((𝑃 pCnt 𝑥) − (𝑃 pCnt 𝑦)) ∈ ℤ)
2513, 24eqeltrd 2234 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt (𝑥 / 𝑦)) ∈ ℤ)
26253expb 1186 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ ((𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ 𝑦 ∈ ℕ)) → (𝑃 pCnt (𝑥 / 𝑦)) ∈ ℤ)
2712, 26sylan2b 285 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0)) → (𝑃 pCnt (𝑥 / 𝑦)) ∈ ℤ)
2827expr 373 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝑥 ≠ 0 → (𝑃 pCnt (𝑥 / 𝑦)) ∈ ℤ))
2911, 28syld 45 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → ((𝑥 / 𝑦) ≠ 0 → (𝑃 pCnt (𝑥 / 𝑦)) ∈ ℤ))
30 neeq1 2340 . . . . . . . 8 (𝑁 = (𝑥 / 𝑦) → (𝑁 ≠ 0 ↔ (𝑥 / 𝑦) ≠ 0))
31 oveq2 5835 . . . . . . . . 9 (𝑁 = (𝑥 / 𝑦) → (𝑃 pCnt 𝑁) = (𝑃 pCnt (𝑥 / 𝑦)))
3231eleq1d 2226 . . . . . . . 8 (𝑁 = (𝑥 / 𝑦) → ((𝑃 pCnt 𝑁) ∈ ℤ ↔ (𝑃 pCnt (𝑥 / 𝑦)) ∈ ℤ))
3330, 32imbi12d 233 . . . . . . 7 (𝑁 = (𝑥 / 𝑦) → ((𝑁 ≠ 0 → (𝑃 pCnt 𝑁) ∈ ℤ) ↔ ((𝑥 / 𝑦) ≠ 0 → (𝑃 pCnt (𝑥 / 𝑦)) ∈ ℤ)))
3429, 33syl5ibrcom 156 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝑁 = (𝑥 / 𝑦) → (𝑁 ≠ 0 → (𝑃 pCnt 𝑁) ∈ ℤ)))
3534com23 78 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝑁 ≠ 0 → (𝑁 = (𝑥 / 𝑦) → (𝑃 pCnt 𝑁) ∈ ℤ)))
3635impancom 258 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ≠ 0) → ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑁 = (𝑥 / 𝑦) → (𝑃 pCnt 𝑁) ∈ ℤ)))
3736adantrl 470 . . 3 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑁 = (𝑥 / 𝑦) → (𝑃 pCnt 𝑁) ∈ ℤ)))
3837rexlimdvv 2581 . 2 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑁 = (𝑥 / 𝑦) → (𝑃 pCnt 𝑁) ∈ ℤ))
393, 38mpd 13 1 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → (𝑃 pCnt 𝑁) ∈ ℤ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 963   = wceq 1335  wcel 2128  wne 2327  wrex 2436  (class class class)co 5827  0cc0 7735  cmin 8051   / cdiv 8550  cn 8839  cz 9173  cq 9535  cprime 12000   pCnt cpc 12175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4082  ax-sep 4085  ax-nul 4093  ax-pow 4138  ax-pr 4172  ax-un 4396  ax-setind 4499  ax-iinf 4550  ax-cnex 7826  ax-resscn 7827  ax-1cn 7828  ax-1re 7829  ax-icn 7830  ax-addcl 7831  ax-addrcl 7832  ax-mulcl 7833  ax-mulrcl 7834  ax-addcom 7835  ax-mulcom 7836  ax-addass 7837  ax-mulass 7838  ax-distr 7839  ax-i2m1 7840  ax-0lt1 7841  ax-1rid 7842  ax-0id 7843  ax-rnegex 7844  ax-precex 7845  ax-cnre 7846  ax-pre-ltirr 7847  ax-pre-ltwlin 7848  ax-pre-lttrn 7849  ax-pre-apti 7850  ax-pre-ltadd 7851  ax-pre-mulgt0 7852  ax-pre-mulext 7853  ax-arch 7854  ax-caucvg 7855
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3396  df-if 3507  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-int 3810  df-iun 3853  df-br 3968  df-opab 4029  df-mpt 4030  df-tr 4066  df-id 4256  df-po 4259  df-iso 4260  df-iord 4329  df-on 4331  df-ilim 4332  df-suc 4334  df-iom 4553  df-xp 4595  df-rel 4596  df-cnv 4597  df-co 4598  df-dm 4599  df-rn 4600  df-res 4601  df-ima 4602  df-iota 5138  df-fun 5175  df-fn 5176  df-f 5177  df-f1 5178  df-fo 5179  df-f1o 5180  df-fv 5181  df-isom 5182  df-riota 5783  df-ov 5830  df-oprab 5831  df-mpo 5832  df-1st 6091  df-2nd 6092  df-recs 6255  df-frec 6341  df-1o 6366  df-2o 6367  df-er 6483  df-en 6689  df-sup 6931  df-inf 6932  df-pnf 7917  df-mnf 7918  df-xr 7919  df-ltxr 7920  df-le 7921  df-sub 8053  df-neg 8054  df-reap 8455  df-ap 8462  df-div 8551  df-inn 8840  df-2 8898  df-3 8899  df-4 8900  df-n0 9097  df-z 9174  df-uz 9446  df-q 9536  df-rp 9568  df-fz 9920  df-fzo 10052  df-fl 10179  df-mod 10232  df-seqfrec 10355  df-exp 10429  df-cj 10754  df-re 10755  df-im 10756  df-rsqrt 10910  df-abs 10911  df-dvds 11696  df-gcd 11843  df-prm 12001  df-pc 12176
This theorem is referenced by:  pcqdiv  12198  pcexp  12200  pcxcl  12201
  Copyright terms: Public domain W3C validator