ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcqcl GIF version

Theorem pcqcl 12234
Description: Closure of the general prime count function. (Contributed by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
pcqcl ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → (𝑃 pCnt 𝑁) ∈ ℤ)

Proof of Theorem pcqcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 521 . . 3 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → 𝑁 ∈ ℚ)
2 elq 9556 . . 3 (𝑁 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑁 = (𝑥 / 𝑦))
31, 2sylib 121 . 2 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑁 = (𝑥 / 𝑦))
4 nncn 8861 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
5 nnap0 8882 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → 𝑦 # 0)
64, 5div0apd 8679 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (0 / 𝑦) = 0)
76ad2antll 483 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (0 / 𝑦) = 0)
8 oveq1 5848 . . . . . . . . . . 11 (𝑥 = 0 → (𝑥 / 𝑦) = (0 / 𝑦))
98eqeq1d 2174 . . . . . . . . . 10 (𝑥 = 0 → ((𝑥 / 𝑦) = 0 ↔ (0 / 𝑦) = 0))
107, 9syl5ibrcom 156 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝑥 = 0 → (𝑥 / 𝑦) = 0))
1110necon3d 2379 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → ((𝑥 / 𝑦) ≠ 0 → 𝑥 ≠ 0))
12 an32 552 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) ↔ ((𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ 𝑦 ∈ ℕ))
13 pcdiv 12230 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt (𝑥 / 𝑦)) = ((𝑃 pCnt 𝑥) − (𝑃 pCnt 𝑦)))
14 pczcl 12226 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → (𝑃 pCnt 𝑥) ∈ ℕ0)
1514nn0zd 9307 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → (𝑃 pCnt 𝑥) ∈ ℤ)
16153adant3 1007 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt 𝑥) ∈ ℤ)
17 nnz 9206 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
18 nnne0 8881 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ → 𝑦 ≠ 0)
1917, 18jca 304 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → (𝑦 ∈ ℤ ∧ 𝑦 ≠ 0))
20 pczcl 12226 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ (𝑦 ∈ ℤ ∧ 𝑦 ≠ 0)) → (𝑃 pCnt 𝑦) ∈ ℕ0)
2120nn0zd 9307 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℙ ∧ (𝑦 ∈ ℤ ∧ 𝑦 ≠ 0)) → (𝑃 pCnt 𝑦) ∈ ℤ)
2219, 21sylan2 284 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt 𝑦) ∈ ℤ)
23223adant2 1006 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt 𝑦) ∈ ℤ)
2416, 23zsubcld 9314 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ 𝑦 ∈ ℕ) → ((𝑃 pCnt 𝑥) − (𝑃 pCnt 𝑦)) ∈ ℤ)
2513, 24eqeltrd 2242 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt (𝑥 / 𝑦)) ∈ ℤ)
26253expb 1194 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ ((𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ 𝑦 ∈ ℕ)) → (𝑃 pCnt (𝑥 / 𝑦)) ∈ ℤ)
2712, 26sylan2b 285 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0)) → (𝑃 pCnt (𝑥 / 𝑦)) ∈ ℤ)
2827expr 373 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝑥 ≠ 0 → (𝑃 pCnt (𝑥 / 𝑦)) ∈ ℤ))
2911, 28syld 45 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → ((𝑥 / 𝑦) ≠ 0 → (𝑃 pCnt (𝑥 / 𝑦)) ∈ ℤ))
30 neeq1 2348 . . . . . . . 8 (𝑁 = (𝑥 / 𝑦) → (𝑁 ≠ 0 ↔ (𝑥 / 𝑦) ≠ 0))
31 oveq2 5849 . . . . . . . . 9 (𝑁 = (𝑥 / 𝑦) → (𝑃 pCnt 𝑁) = (𝑃 pCnt (𝑥 / 𝑦)))
3231eleq1d 2234 . . . . . . . 8 (𝑁 = (𝑥 / 𝑦) → ((𝑃 pCnt 𝑁) ∈ ℤ ↔ (𝑃 pCnt (𝑥 / 𝑦)) ∈ ℤ))
3330, 32imbi12d 233 . . . . . . 7 (𝑁 = (𝑥 / 𝑦) → ((𝑁 ≠ 0 → (𝑃 pCnt 𝑁) ∈ ℤ) ↔ ((𝑥 / 𝑦) ≠ 0 → (𝑃 pCnt (𝑥 / 𝑦)) ∈ ℤ)))
3429, 33syl5ibrcom 156 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝑁 = (𝑥 / 𝑦) → (𝑁 ≠ 0 → (𝑃 pCnt 𝑁) ∈ ℤ)))
3534com23 78 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝑁 ≠ 0 → (𝑁 = (𝑥 / 𝑦) → (𝑃 pCnt 𝑁) ∈ ℤ)))
3635impancom 258 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ≠ 0) → ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑁 = (𝑥 / 𝑦) → (𝑃 pCnt 𝑁) ∈ ℤ)))
3736adantrl 470 . . 3 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑁 = (𝑥 / 𝑦) → (𝑃 pCnt 𝑁) ∈ ℤ)))
3837rexlimdvv 2589 . 2 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑁 = (𝑥 / 𝑦) → (𝑃 pCnt 𝑁) ∈ ℤ))
393, 38mpd 13 1 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → (𝑃 pCnt 𝑁) ∈ ℤ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 968   = wceq 1343  wcel 2136  wne 2335  wrex 2444  (class class class)co 5841  0cc0 7749  cmin 8065   / cdiv 8564  cn 8853  cz 9187  cq 9553  cprime 12035   pCnt cpc 12212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4096  ax-sep 4099  ax-nul 4107  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-setind 4513  ax-iinf 4564  ax-cnex 7840  ax-resscn 7841  ax-1cn 7842  ax-1re 7843  ax-icn 7844  ax-addcl 7845  ax-addrcl 7846  ax-mulcl 7847  ax-mulrcl 7848  ax-addcom 7849  ax-mulcom 7850  ax-addass 7851  ax-mulass 7852  ax-distr 7853  ax-i2m1 7854  ax-0lt1 7855  ax-1rid 7856  ax-0id 7857  ax-rnegex 7858  ax-precex 7859  ax-cnre 7860  ax-pre-ltirr 7861  ax-pre-ltwlin 7862  ax-pre-lttrn 7863  ax-pre-apti 7864  ax-pre-ltadd 7865  ax-pre-mulgt0 7866  ax-pre-mulext 7867  ax-arch 7868  ax-caucvg 7869
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-nel 2431  df-ral 2448  df-rex 2449  df-reu 2450  df-rmo 2451  df-rab 2452  df-v 2727  df-sbc 2951  df-csb 3045  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-nul 3409  df-if 3520  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-int 3824  df-iun 3867  df-br 3982  df-opab 4043  df-mpt 4044  df-tr 4080  df-id 4270  df-po 4273  df-iso 4274  df-iord 4343  df-on 4345  df-ilim 4346  df-suc 4348  df-iom 4567  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616  df-iota 5152  df-fun 5189  df-fn 5190  df-f 5191  df-f1 5192  df-fo 5193  df-f1o 5194  df-fv 5195  df-isom 5196  df-riota 5797  df-ov 5844  df-oprab 5845  df-mpo 5846  df-1st 6105  df-2nd 6106  df-recs 6269  df-frec 6355  df-1o 6380  df-2o 6381  df-er 6497  df-en 6703  df-sup 6945  df-inf 6946  df-pnf 7931  df-mnf 7932  df-xr 7933  df-ltxr 7934  df-le 7935  df-sub 8067  df-neg 8068  df-reap 8469  df-ap 8476  df-div 8565  df-inn 8854  df-2 8912  df-3 8913  df-4 8914  df-n0 9111  df-z 9188  df-uz 9463  df-q 9554  df-rp 9586  df-fz 9941  df-fzo 10074  df-fl 10201  df-mod 10254  df-seqfrec 10377  df-exp 10451  df-cj 10780  df-re 10781  df-im 10782  df-rsqrt 10936  df-abs 10937  df-dvds 11724  df-gcd 11872  df-prm 12036  df-pc 12213
This theorem is referenced by:  pcqdiv  12235  pcexp  12237  pcxcl  12239  pcadd  12267  qexpz  12278  expnprm  12279
  Copyright terms: Public domain W3C validator