Step | Hyp | Ref
| Expression |
1 | | f1stres 6009 |
. . 3
⊢
(1st ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)⟶𝑋 |
2 | 1 | a1i 9 |
. 2
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (1st ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)⟶𝑋) |
3 | | toponss 12030 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑤 ∈ 𝑅) → 𝑤 ⊆ 𝑋) |
4 | 3 | adantlr 466 |
. . . . . . . . 9
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤 ∈ 𝑅) → 𝑤 ⊆ 𝑋) |
5 | | xpss1 4607 |
. . . . . . . . 9
⊢ (𝑤 ⊆ 𝑋 → (𝑤 × 𝑌) ⊆ (𝑋 × 𝑌)) |
6 | 4, 5 | syl 14 |
. . . . . . . 8
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤 ∈ 𝑅) → (𝑤 × 𝑌) ⊆ (𝑋 × 𝑌)) |
7 | 6 | sseld 3060 |
. . . . . . 7
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤 ∈ 𝑅) → (𝑧 ∈ (𝑤 × 𝑌) → 𝑧 ∈ (𝑋 × 𝑌))) |
8 | 7 | pm4.71rd 389 |
. . . . . 6
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤 ∈ 𝑅) → (𝑧 ∈ (𝑤 × 𝑌) ↔ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ (𝑤 × 𝑌)))) |
9 | | ffn 5228 |
. . . . . . . 8
⊢
((1st ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)⟶𝑋 → (1st ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌)) |
10 | | elpreima 5491 |
. . . . . . . 8
⊢
((1st ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌) → (𝑧 ∈ (◡(1st ↾ (𝑋 × 𝑌)) “ 𝑤) ↔ (𝑧 ∈ (𝑋 × 𝑌) ∧ ((1st ↾ (𝑋 × 𝑌))‘𝑧) ∈ 𝑤))) |
11 | 1, 9, 10 | mp2b 8 |
. . . . . . 7
⊢ (𝑧 ∈ (◡(1st ↾ (𝑋 × 𝑌)) “ 𝑤) ↔ (𝑧 ∈ (𝑋 × 𝑌) ∧ ((1st ↾ (𝑋 × 𝑌))‘𝑧) ∈ 𝑤)) |
12 | | fvres 5397 |
. . . . . . . . . 10
⊢ (𝑧 ∈ (𝑋 × 𝑌) → ((1st ↾ (𝑋 × 𝑌))‘𝑧) = (1st ‘𝑧)) |
13 | 12 | eleq1d 2181 |
. . . . . . . . 9
⊢ (𝑧 ∈ (𝑋 × 𝑌) → (((1st ↾ (𝑋 × 𝑌))‘𝑧) ∈ 𝑤 ↔ (1st ‘𝑧) ∈ 𝑤)) |
14 | | 1st2nd2 6025 |
. . . . . . . . . 10
⊢ (𝑧 ∈ (𝑋 × 𝑌) → 𝑧 = 〈(1st ‘𝑧), (2nd ‘𝑧)〉) |
15 | | xp2nd 6016 |
. . . . . . . . . 10
⊢ (𝑧 ∈ (𝑋 × 𝑌) → (2nd ‘𝑧) ∈ 𝑌) |
16 | | elxp6 6019 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ (𝑤 × 𝑌) ↔ (𝑧 = 〈(1st ‘𝑧), (2nd ‘𝑧)〉 ∧ ((1st
‘𝑧) ∈ 𝑤 ∧ (2nd
‘𝑧) ∈ 𝑌))) |
17 | | anass 396 |
. . . . . . . . . . . 12
⊢ (((𝑧 = 〈(1st
‘𝑧), (2nd
‘𝑧)〉 ∧
(1st ‘𝑧)
∈ 𝑤) ∧
(2nd ‘𝑧)
∈ 𝑌) ↔ (𝑧 = 〈(1st
‘𝑧), (2nd
‘𝑧)〉 ∧
((1st ‘𝑧)
∈ 𝑤 ∧
(2nd ‘𝑧)
∈ 𝑌))) |
18 | | an32 534 |
. . . . . . . . . . . 12
⊢ (((𝑧 = 〈(1st
‘𝑧), (2nd
‘𝑧)〉 ∧
(1st ‘𝑧)
∈ 𝑤) ∧
(2nd ‘𝑧)
∈ 𝑌) ↔ ((𝑧 = 〈(1st
‘𝑧), (2nd
‘𝑧)〉 ∧
(2nd ‘𝑧)
∈ 𝑌) ∧
(1st ‘𝑧)
∈ 𝑤)) |
19 | 16, 17, 18 | 3bitr2i 207 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ (𝑤 × 𝑌) ↔ ((𝑧 = 〈(1st ‘𝑧), (2nd ‘𝑧)〉 ∧ (2nd
‘𝑧) ∈ 𝑌) ∧ (1st
‘𝑧) ∈ 𝑤)) |
20 | 19 | baib 885 |
. . . . . . . . . 10
⊢ ((𝑧 = 〈(1st
‘𝑧), (2nd
‘𝑧)〉 ∧
(2nd ‘𝑧)
∈ 𝑌) → (𝑧 ∈ (𝑤 × 𝑌) ↔ (1st ‘𝑧) ∈ 𝑤)) |
21 | 14, 15, 20 | syl2anc 406 |
. . . . . . . . 9
⊢ (𝑧 ∈ (𝑋 × 𝑌) → (𝑧 ∈ (𝑤 × 𝑌) ↔ (1st ‘𝑧) ∈ 𝑤)) |
22 | 13, 21 | bitr4d 190 |
. . . . . . . 8
⊢ (𝑧 ∈ (𝑋 × 𝑌) → (((1st ↾ (𝑋 × 𝑌))‘𝑧) ∈ 𝑤 ↔ 𝑧 ∈ (𝑤 × 𝑌))) |
23 | 22 | pm5.32i 447 |
. . . . . . 7
⊢ ((𝑧 ∈ (𝑋 × 𝑌) ∧ ((1st ↾ (𝑋 × 𝑌))‘𝑧) ∈ 𝑤) ↔ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ (𝑤 × 𝑌))) |
24 | 11, 23 | bitri 183 |
. . . . . 6
⊢ (𝑧 ∈ (◡(1st ↾ (𝑋 × 𝑌)) “ 𝑤) ↔ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ (𝑤 × 𝑌))) |
25 | 8, 24 | syl6rbbr 198 |
. . . . 5
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤 ∈ 𝑅) → (𝑧 ∈ (◡(1st ↾ (𝑋 × 𝑌)) “ 𝑤) ↔ 𝑧 ∈ (𝑤 × 𝑌))) |
26 | 25 | eqrdv 2111 |
. . . 4
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤 ∈ 𝑅) → (◡(1st ↾ (𝑋 × 𝑌)) “ 𝑤) = (𝑤 × 𝑌)) |
27 | | toponmax 12029 |
. . . . . 6
⊢ (𝑆 ∈ (TopOn‘𝑌) → 𝑌 ∈ 𝑆) |
28 | 27 | ad2antlr 478 |
. . . . 5
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤 ∈ 𝑅) → 𝑌 ∈ 𝑆) |
29 | | txopn 12270 |
. . . . . 6
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑤 ∈ 𝑅 ∧ 𝑌 ∈ 𝑆)) → (𝑤 × 𝑌) ∈ (𝑅 ×t 𝑆)) |
30 | 29 | anassrs 395 |
. . . . 5
⊢ ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤 ∈ 𝑅) ∧ 𝑌 ∈ 𝑆) → (𝑤 × 𝑌) ∈ (𝑅 ×t 𝑆)) |
31 | 28, 30 | mpdan 415 |
. . . 4
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤 ∈ 𝑅) → (𝑤 × 𝑌) ∈ (𝑅 ×t 𝑆)) |
32 | 26, 31 | eqeltrd 2189 |
. . 3
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤 ∈ 𝑅) → (◡(1st ↾ (𝑋 × 𝑌)) “ 𝑤) ∈ (𝑅 ×t 𝑆)) |
33 | 32 | ralrimiva 2477 |
. 2
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → ∀𝑤 ∈ 𝑅 (◡(1st ↾ (𝑋 × 𝑌)) “ 𝑤) ∈ (𝑅 ×t 𝑆)) |
34 | | txtopon 12267 |
. . 3
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌))) |
35 | | simpl 108 |
. . 3
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → 𝑅 ∈ (TopOn‘𝑋)) |
36 | | iscn 12202 |
. . 3
⊢ (((𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝑅 ∈ (TopOn‘𝑋)) → ((1st ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅) ↔ ((1st ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)⟶𝑋 ∧ ∀𝑤 ∈ 𝑅 (◡(1st ↾ (𝑋 × 𝑌)) “ 𝑤) ∈ (𝑅 ×t 𝑆)))) |
37 | 34, 35, 36 | syl2anc 406 |
. 2
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → ((1st ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅) ↔ ((1st ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)⟶𝑋 ∧ ∀𝑤 ∈ 𝑅 (◡(1st ↾ (𝑋 × 𝑌)) “ 𝑤) ∈ (𝑅 ×t 𝑆)))) |
38 | 2, 33, 37 | mpbir2and 909 |
1
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (1st ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅)) |