ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resco GIF version

Theorem resco 5038
Description: Associative law for the restriction of a composition. (Contributed by NM, 12-Dec-2006.)
Assertion
Ref Expression
resco ((𝐴𝐵) ↾ 𝐶) = (𝐴 ∘ (𝐵𝐶))

Proof of Theorem resco
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 4842 . 2 Rel ((𝐴𝐵) ↾ 𝐶)
2 relco 5032 . 2 Rel (𝐴 ∘ (𝐵𝐶))
3 vex 2684 . . . . . 6 𝑥 ∈ V
4 vex 2684 . . . . . 6 𝑦 ∈ V
53, 4brco 4705 . . . . 5 (𝑥(𝐴𝐵)𝑦 ↔ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦))
65anbi1i 453 . . . 4 ((𝑥(𝐴𝐵)𝑦𝑥𝐶) ↔ (∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦) ∧ 𝑥𝐶))
7 19.41v 1874 . . . 4 (∃𝑧((𝑥𝐵𝑧𝑧𝐴𝑦) ∧ 𝑥𝐶) ↔ (∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦) ∧ 𝑥𝐶))
8 an32 551 . . . . . 6 (((𝑥𝐵𝑧𝑧𝐴𝑦) ∧ 𝑥𝐶) ↔ ((𝑥𝐵𝑧𝑥𝐶) ∧ 𝑧𝐴𝑦))
9 vex 2684 . . . . . . . 8 𝑧 ∈ V
109brres 4820 . . . . . . 7 (𝑥(𝐵𝐶)𝑧 ↔ (𝑥𝐵𝑧𝑥𝐶))
1110anbi1i 453 . . . . . 6 ((𝑥(𝐵𝐶)𝑧𝑧𝐴𝑦) ↔ ((𝑥𝐵𝑧𝑥𝐶) ∧ 𝑧𝐴𝑦))
128, 11bitr4i 186 . . . . 5 (((𝑥𝐵𝑧𝑧𝐴𝑦) ∧ 𝑥𝐶) ↔ (𝑥(𝐵𝐶)𝑧𝑧𝐴𝑦))
1312exbii 1584 . . . 4 (∃𝑧((𝑥𝐵𝑧𝑧𝐴𝑦) ∧ 𝑥𝐶) ↔ ∃𝑧(𝑥(𝐵𝐶)𝑧𝑧𝐴𝑦))
146, 7, 133bitr2i 207 . . 3 ((𝑥(𝐴𝐵)𝑦𝑥𝐶) ↔ ∃𝑧(𝑥(𝐵𝐶)𝑧𝑧𝐴𝑦))
154brres 4820 . . 3 (𝑥((𝐴𝐵) ↾ 𝐶)𝑦 ↔ (𝑥(𝐴𝐵)𝑦𝑥𝐶))
163, 4brco 4705 . . 3 (𝑥(𝐴 ∘ (𝐵𝐶))𝑦 ↔ ∃𝑧(𝑥(𝐵𝐶)𝑧𝑧𝐴𝑦))
1714, 15, 163bitr4i 211 . 2 (𝑥((𝐴𝐵) ↾ 𝐶)𝑦𝑥(𝐴 ∘ (𝐵𝐶))𝑦)
181, 2, 17eqbrriv 4629 1 ((𝐴𝐵) ↾ 𝐶) = (𝐴 ∘ (𝐵𝐶))
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1331  wex 1468  wcel 1480   class class class wbr 3924  cres 4536  ccom 4538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-v 2683  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-br 3925  df-opab 3985  df-xp 4540  df-rel 4541  df-co 4543  df-res 4546
This theorem is referenced by:  cocnvcnv2  5045  coires1  5051  relcoi1  5065  dftpos2  6151
  Copyright terms: Public domain W3C validator