Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > resco | GIF version |
Description: Associative law for the restriction of a composition. (Contributed by NM, 12-Dec-2006.) |
Ref | Expression |
---|---|
resco | ⊢ ((𝐴 ∘ 𝐵) ↾ 𝐶) = (𝐴 ∘ (𝐵 ↾ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relres 4919 | . 2 ⊢ Rel ((𝐴 ∘ 𝐵) ↾ 𝐶) | |
2 | relco 5109 | . 2 ⊢ Rel (𝐴 ∘ (𝐵 ↾ 𝐶)) | |
3 | vex 2733 | . . . . . 6 ⊢ 𝑥 ∈ V | |
4 | vex 2733 | . . . . . 6 ⊢ 𝑦 ∈ V | |
5 | 3, 4 | brco 4782 | . . . . 5 ⊢ (𝑥(𝐴 ∘ 𝐵)𝑦 ↔ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) |
6 | 5 | anbi1i 455 | . . . 4 ⊢ ((𝑥(𝐴 ∘ 𝐵)𝑦 ∧ 𝑥 ∈ 𝐶) ↔ (∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ∧ 𝑥 ∈ 𝐶)) |
7 | 19.41v 1895 | . . . 4 ⊢ (∃𝑧((𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ∧ 𝑥 ∈ 𝐶) ↔ (∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ∧ 𝑥 ∈ 𝐶)) | |
8 | an32 557 | . . . . . 6 ⊢ (((𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ∧ 𝑥 ∈ 𝐶) ↔ ((𝑥𝐵𝑧 ∧ 𝑥 ∈ 𝐶) ∧ 𝑧𝐴𝑦)) | |
9 | vex 2733 | . . . . . . . 8 ⊢ 𝑧 ∈ V | |
10 | 9 | brres 4897 | . . . . . . 7 ⊢ (𝑥(𝐵 ↾ 𝐶)𝑧 ↔ (𝑥𝐵𝑧 ∧ 𝑥 ∈ 𝐶)) |
11 | 10 | anbi1i 455 | . . . . . 6 ⊢ ((𝑥(𝐵 ↾ 𝐶)𝑧 ∧ 𝑧𝐴𝑦) ↔ ((𝑥𝐵𝑧 ∧ 𝑥 ∈ 𝐶) ∧ 𝑧𝐴𝑦)) |
12 | 8, 11 | bitr4i 186 | . . . . 5 ⊢ (((𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ∧ 𝑥 ∈ 𝐶) ↔ (𝑥(𝐵 ↾ 𝐶)𝑧 ∧ 𝑧𝐴𝑦)) |
13 | 12 | exbii 1598 | . . . 4 ⊢ (∃𝑧((𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ∧ 𝑥 ∈ 𝐶) ↔ ∃𝑧(𝑥(𝐵 ↾ 𝐶)𝑧 ∧ 𝑧𝐴𝑦)) |
14 | 6, 7, 13 | 3bitr2i 207 | . . 3 ⊢ ((𝑥(𝐴 ∘ 𝐵)𝑦 ∧ 𝑥 ∈ 𝐶) ↔ ∃𝑧(𝑥(𝐵 ↾ 𝐶)𝑧 ∧ 𝑧𝐴𝑦)) |
15 | 4 | brres 4897 | . . 3 ⊢ (𝑥((𝐴 ∘ 𝐵) ↾ 𝐶)𝑦 ↔ (𝑥(𝐴 ∘ 𝐵)𝑦 ∧ 𝑥 ∈ 𝐶)) |
16 | 3, 4 | brco 4782 | . . 3 ⊢ (𝑥(𝐴 ∘ (𝐵 ↾ 𝐶))𝑦 ↔ ∃𝑧(𝑥(𝐵 ↾ 𝐶)𝑧 ∧ 𝑧𝐴𝑦)) |
17 | 14, 15, 16 | 3bitr4i 211 | . 2 ⊢ (𝑥((𝐴 ∘ 𝐵) ↾ 𝐶)𝑦 ↔ 𝑥(𝐴 ∘ (𝐵 ↾ 𝐶))𝑦) |
18 | 1, 2, 17 | eqbrriv 4706 | 1 ⊢ ((𝐴 ∘ 𝐵) ↾ 𝐶) = (𝐴 ∘ (𝐵 ↾ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1348 ∃wex 1485 ∈ wcel 2141 class class class wbr 3989 ↾ cres 4613 ∘ ccom 4615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-xp 4617 df-rel 4618 df-co 4620 df-res 4623 |
This theorem is referenced by: cocnvcnv2 5122 coires1 5128 relcoi1 5142 dftpos2 6240 |
Copyright terms: Public domain | W3C validator |