![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > resco | GIF version |
Description: Associative law for the restriction of a composition. (Contributed by NM, 12-Dec-2006.) |
Ref | Expression |
---|---|
resco | ⊢ ((𝐴 ∘ 𝐵) ↾ 𝐶) = (𝐴 ∘ (𝐵 ↾ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relres 4741 | . 2 ⊢ Rel ((𝐴 ∘ 𝐵) ↾ 𝐶) | |
2 | relco 4929 | . 2 ⊢ Rel (𝐴 ∘ (𝐵 ↾ 𝐶)) | |
3 | vex 2622 | . . . . . 6 ⊢ 𝑥 ∈ V | |
4 | vex 2622 | . . . . . 6 ⊢ 𝑦 ∈ V | |
5 | 3, 4 | brco 4607 | . . . . 5 ⊢ (𝑥(𝐴 ∘ 𝐵)𝑦 ↔ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) |
6 | 5 | anbi1i 446 | . . . 4 ⊢ ((𝑥(𝐴 ∘ 𝐵)𝑦 ∧ 𝑥 ∈ 𝐶) ↔ (∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ∧ 𝑥 ∈ 𝐶)) |
7 | 19.41v 1830 | . . . 4 ⊢ (∃𝑧((𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ∧ 𝑥 ∈ 𝐶) ↔ (∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ∧ 𝑥 ∈ 𝐶)) | |
8 | an32 529 | . . . . . 6 ⊢ (((𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ∧ 𝑥 ∈ 𝐶) ↔ ((𝑥𝐵𝑧 ∧ 𝑥 ∈ 𝐶) ∧ 𝑧𝐴𝑦)) | |
9 | vex 2622 | . . . . . . . 8 ⊢ 𝑧 ∈ V | |
10 | 9 | brres 4719 | . . . . . . 7 ⊢ (𝑥(𝐵 ↾ 𝐶)𝑧 ↔ (𝑥𝐵𝑧 ∧ 𝑥 ∈ 𝐶)) |
11 | 10 | anbi1i 446 | . . . . . 6 ⊢ ((𝑥(𝐵 ↾ 𝐶)𝑧 ∧ 𝑧𝐴𝑦) ↔ ((𝑥𝐵𝑧 ∧ 𝑥 ∈ 𝐶) ∧ 𝑧𝐴𝑦)) |
12 | 8, 11 | bitr4i 185 | . . . . 5 ⊢ (((𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ∧ 𝑥 ∈ 𝐶) ↔ (𝑥(𝐵 ↾ 𝐶)𝑧 ∧ 𝑧𝐴𝑦)) |
13 | 12 | exbii 1541 | . . . 4 ⊢ (∃𝑧((𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ∧ 𝑥 ∈ 𝐶) ↔ ∃𝑧(𝑥(𝐵 ↾ 𝐶)𝑧 ∧ 𝑧𝐴𝑦)) |
14 | 6, 7, 13 | 3bitr2i 206 | . . 3 ⊢ ((𝑥(𝐴 ∘ 𝐵)𝑦 ∧ 𝑥 ∈ 𝐶) ↔ ∃𝑧(𝑥(𝐵 ↾ 𝐶)𝑧 ∧ 𝑧𝐴𝑦)) |
15 | 4 | brres 4719 | . . 3 ⊢ (𝑥((𝐴 ∘ 𝐵) ↾ 𝐶)𝑦 ↔ (𝑥(𝐴 ∘ 𝐵)𝑦 ∧ 𝑥 ∈ 𝐶)) |
16 | 3, 4 | brco 4607 | . . 3 ⊢ (𝑥(𝐴 ∘ (𝐵 ↾ 𝐶))𝑦 ↔ ∃𝑧(𝑥(𝐵 ↾ 𝐶)𝑧 ∧ 𝑧𝐴𝑦)) |
17 | 14, 15, 16 | 3bitr4i 210 | . 2 ⊢ (𝑥((𝐴 ∘ 𝐵) ↾ 𝐶)𝑦 ↔ 𝑥(𝐴 ∘ (𝐵 ↾ 𝐶))𝑦) |
18 | 1, 2, 17 | eqbrriv 4533 | 1 ⊢ ((𝐴 ∘ 𝐵) ↾ 𝐶) = (𝐴 ∘ (𝐵 ↾ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 102 = wceq 1289 ∃wex 1426 ∈ wcel 1438 class class class wbr 3845 ↾ cres 4440 ∘ ccom 4442 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 ax-pow 4009 ax-pr 4036 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ral 2364 df-rex 2365 df-v 2621 df-un 3003 df-in 3005 df-ss 3012 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-br 3846 df-opab 3900 df-xp 4444 df-rel 4445 df-co 4447 df-res 4450 |
This theorem is referenced by: cocnvcnv2 4942 coires1 4948 relcoi1 4962 dftpos2 6026 |
Copyright terms: Public domain | W3C validator |