![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > resco | GIF version |
Description: Associative law for the restriction of a composition. (Contributed by NM, 12-Dec-2006.) |
Ref | Expression |
---|---|
resco | ⊢ ((𝐴 ∘ 𝐵) ↾ 𝐶) = (𝐴 ∘ (𝐵 ↾ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relres 4936 | . 2 ⊢ Rel ((𝐴 ∘ 𝐵) ↾ 𝐶) | |
2 | relco 5128 | . 2 ⊢ Rel (𝐴 ∘ (𝐵 ↾ 𝐶)) | |
3 | vex 2741 | . . . . . 6 ⊢ 𝑥 ∈ V | |
4 | vex 2741 | . . . . . 6 ⊢ 𝑦 ∈ V | |
5 | 3, 4 | brco 4799 | . . . . 5 ⊢ (𝑥(𝐴 ∘ 𝐵)𝑦 ↔ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) |
6 | 5 | anbi1i 458 | . . . 4 ⊢ ((𝑥(𝐴 ∘ 𝐵)𝑦 ∧ 𝑥 ∈ 𝐶) ↔ (∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ∧ 𝑥 ∈ 𝐶)) |
7 | 19.41v 1902 | . . . 4 ⊢ (∃𝑧((𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ∧ 𝑥 ∈ 𝐶) ↔ (∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ∧ 𝑥 ∈ 𝐶)) | |
8 | an32 562 | . . . . . 6 ⊢ (((𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ∧ 𝑥 ∈ 𝐶) ↔ ((𝑥𝐵𝑧 ∧ 𝑥 ∈ 𝐶) ∧ 𝑧𝐴𝑦)) | |
9 | vex 2741 | . . . . . . . 8 ⊢ 𝑧 ∈ V | |
10 | 9 | brres 4914 | . . . . . . 7 ⊢ (𝑥(𝐵 ↾ 𝐶)𝑧 ↔ (𝑥𝐵𝑧 ∧ 𝑥 ∈ 𝐶)) |
11 | 10 | anbi1i 458 | . . . . . 6 ⊢ ((𝑥(𝐵 ↾ 𝐶)𝑧 ∧ 𝑧𝐴𝑦) ↔ ((𝑥𝐵𝑧 ∧ 𝑥 ∈ 𝐶) ∧ 𝑧𝐴𝑦)) |
12 | 8, 11 | bitr4i 187 | . . . . 5 ⊢ (((𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ∧ 𝑥 ∈ 𝐶) ↔ (𝑥(𝐵 ↾ 𝐶)𝑧 ∧ 𝑧𝐴𝑦)) |
13 | 12 | exbii 1605 | . . . 4 ⊢ (∃𝑧((𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ∧ 𝑥 ∈ 𝐶) ↔ ∃𝑧(𝑥(𝐵 ↾ 𝐶)𝑧 ∧ 𝑧𝐴𝑦)) |
14 | 6, 7, 13 | 3bitr2i 208 | . . 3 ⊢ ((𝑥(𝐴 ∘ 𝐵)𝑦 ∧ 𝑥 ∈ 𝐶) ↔ ∃𝑧(𝑥(𝐵 ↾ 𝐶)𝑧 ∧ 𝑧𝐴𝑦)) |
15 | 4 | brres 4914 | . . 3 ⊢ (𝑥((𝐴 ∘ 𝐵) ↾ 𝐶)𝑦 ↔ (𝑥(𝐴 ∘ 𝐵)𝑦 ∧ 𝑥 ∈ 𝐶)) |
16 | 3, 4 | brco 4799 | . . 3 ⊢ (𝑥(𝐴 ∘ (𝐵 ↾ 𝐶))𝑦 ↔ ∃𝑧(𝑥(𝐵 ↾ 𝐶)𝑧 ∧ 𝑧𝐴𝑦)) |
17 | 14, 15, 16 | 3bitr4i 212 | . 2 ⊢ (𝑥((𝐴 ∘ 𝐵) ↾ 𝐶)𝑦 ↔ 𝑥(𝐴 ∘ (𝐵 ↾ 𝐶))𝑦) |
18 | 1, 2, 17 | eqbrriv 4722 | 1 ⊢ ((𝐴 ∘ 𝐵) ↾ 𝐶) = (𝐴 ∘ (𝐵 ↾ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1353 ∃wex 1492 ∈ wcel 2148 class class class wbr 4004 ↾ cres 4629 ∘ ccom 4631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2740 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-br 4005 df-opab 4066 df-xp 4633 df-rel 4634 df-co 4636 df-res 4639 |
This theorem is referenced by: cocnvcnv2 5141 coires1 5147 relcoi1 5161 dftpos2 6262 |
Copyright terms: Public domain | W3C validator |