ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unitpropdg GIF version

Theorem unitpropdg 14120
Description: The set of units depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.)
Hypotheses
Ref Expression
unitpropdg.1 (𝜑𝐵 = (Base‘𝐾))
unitpropdg.2 (𝜑𝐵 = (Base‘𝐿))
unitpropdg.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
unitpropdg.k (𝜑𝐾 ∈ Ring)
unitpropdg.l (𝜑𝐿 ∈ Ring)
Assertion
Ref Expression
unitpropdg (𝜑 → (Unit‘𝐾) = (Unit‘𝐿))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦

Proof of Theorem unitpropdg
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 unitpropdg.1 . . . . . . 7 (𝜑𝐵 = (Base‘𝐾))
2 unitpropdg.2 . . . . . . 7 (𝜑𝐵 = (Base‘𝐿))
3 unitpropdg.3 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
4 unitpropdg.k . . . . . . 7 (𝜑𝐾 ∈ Ring)
5 unitpropdg.l . . . . . . 7 (𝜑𝐿 ∈ Ring)
61, 2, 3, 4, 5rngidpropdg 14118 . . . . . 6 (𝜑 → (1r𝐾) = (1r𝐿))
76breq2d 4095 . . . . 5 (𝜑 → (𝑧(∥r𝐾)(1r𝐾) ↔ 𝑧(∥r𝐾)(1r𝐿)))
86breq2d 4095 . . . . 5 (𝜑 → (𝑧(∥r‘(oppr𝐾))(1r𝐾) ↔ 𝑧(∥r‘(oppr𝐾))(1r𝐿)))
97, 8anbi12d 473 . . . 4 (𝜑 → ((𝑧(∥r𝐾)(1r𝐾) ∧ 𝑧(∥r‘(oppr𝐾))(1r𝐾)) ↔ (𝑧(∥r𝐾)(1r𝐿) ∧ 𝑧(∥r‘(oppr𝐾))(1r𝐿))))
10 ringsrg 14018 . . . . . . . 8 (𝐾 ∈ Ring → 𝐾 ∈ SRing)
114, 10syl 14 . . . . . . 7 (𝜑𝐾 ∈ SRing)
12 ringsrg 14018 . . . . . . . 8 (𝐿 ∈ Ring → 𝐿 ∈ SRing)
135, 12syl 14 . . . . . . 7 (𝜑𝐿 ∈ SRing)
141, 2, 3, 11, 13dvdsrpropdg 14119 . . . . . 6 (𝜑 → (∥r𝐾) = (∥r𝐿))
1514breqd 4094 . . . . 5 (𝜑 → (𝑧(∥r𝐾)(1r𝐿) ↔ 𝑧(∥r𝐿)(1r𝐿)))
16 eqid 2229 . . . . . . . . . 10 (oppr𝐾) = (oppr𝐾)
17 eqid 2229 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
1816, 17opprbasg 14046 . . . . . . . . 9 (𝐾 ∈ Ring → (Base‘𝐾) = (Base‘(oppr𝐾)))
194, 18syl 14 . . . . . . . 8 (𝜑 → (Base‘𝐾) = (Base‘(oppr𝐾)))
201, 19eqtrd 2262 . . . . . . 7 (𝜑𝐵 = (Base‘(oppr𝐾)))
21 eqid 2229 . . . . . . . . . 10 (oppr𝐿) = (oppr𝐿)
22 eqid 2229 . . . . . . . . . 10 (Base‘𝐿) = (Base‘𝐿)
2321, 22opprbasg 14046 . . . . . . . . 9 (𝐿 ∈ Ring → (Base‘𝐿) = (Base‘(oppr𝐿)))
245, 23syl 14 . . . . . . . 8 (𝜑 → (Base‘𝐿) = (Base‘(oppr𝐿)))
252, 24eqtrd 2262 . . . . . . 7 (𝜑𝐵 = (Base‘(oppr𝐿)))
263ancom2s 566 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑥𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
274adantr 276 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑥𝐵)) → 𝐾 ∈ Ring)
28 simprl 529 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑥𝐵)) → 𝑦𝐵)
29 simprr 531 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑥𝐵)) → 𝑥𝐵)
30 eqid 2229 . . . . . . . . . 10 (.r𝐾) = (.r𝐾)
31 eqid 2229 . . . . . . . . . 10 (.r‘(oppr𝐾)) = (.r‘(oppr𝐾))
3217, 30, 16, 31opprmulg 14042 . . . . . . . . 9 ((𝐾 ∈ Ring ∧ 𝑦𝐵𝑥𝐵) → (𝑦(.r‘(oppr𝐾))𝑥) = (𝑥(.r𝐾)𝑦))
3327, 28, 29, 32syl3anc 1271 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑥𝐵)) → (𝑦(.r‘(oppr𝐾))𝑥) = (𝑥(.r𝐾)𝑦))
345adantr 276 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑥𝐵)) → 𝐿 ∈ Ring)
35 eqid 2229 . . . . . . . . . 10 (.r𝐿) = (.r𝐿)
36 eqid 2229 . . . . . . . . . 10 (.r‘(oppr𝐿)) = (.r‘(oppr𝐿))
3722, 35, 21, 36opprmulg 14042 . . . . . . . . 9 ((𝐿 ∈ Ring ∧ 𝑦𝐵𝑥𝐵) → (𝑦(.r‘(oppr𝐿))𝑥) = (𝑥(.r𝐿)𝑦))
3834, 28, 29, 37syl3anc 1271 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑥𝐵)) → (𝑦(.r‘(oppr𝐿))𝑥) = (𝑥(.r𝐿)𝑦))
3926, 33, 383eqtr4d 2272 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑥𝐵)) → (𝑦(.r‘(oppr𝐾))𝑥) = (𝑦(.r‘(oppr𝐿))𝑥))
4016opprring 14050 . . . . . . . 8 (𝐾 ∈ Ring → (oppr𝐾) ∈ Ring)
41 ringsrg 14018 . . . . . . . 8 ((oppr𝐾) ∈ Ring → (oppr𝐾) ∈ SRing)
424, 40, 413syl 17 . . . . . . 7 (𝜑 → (oppr𝐾) ∈ SRing)
4321opprring 14050 . . . . . . . 8 (𝐿 ∈ Ring → (oppr𝐿) ∈ Ring)
44 ringsrg 14018 . . . . . . . 8 ((oppr𝐿) ∈ Ring → (oppr𝐿) ∈ SRing)
455, 43, 443syl 17 . . . . . . 7 (𝜑 → (oppr𝐿) ∈ SRing)
4620, 25, 39, 42, 45dvdsrpropdg 14119 . . . . . 6 (𝜑 → (∥r‘(oppr𝐾)) = (∥r‘(oppr𝐿)))
4746breqd 4094 . . . . 5 (𝜑 → (𝑧(∥r‘(oppr𝐾))(1r𝐿) ↔ 𝑧(∥r‘(oppr𝐿))(1r𝐿)))
4815, 47anbi12d 473 . . . 4 (𝜑 → ((𝑧(∥r𝐾)(1r𝐿) ∧ 𝑧(∥r‘(oppr𝐾))(1r𝐿)) ↔ (𝑧(∥r𝐿)(1r𝐿) ∧ 𝑧(∥r‘(oppr𝐿))(1r𝐿))))
499, 48bitrd 188 . . 3 (𝜑 → ((𝑧(∥r𝐾)(1r𝐾) ∧ 𝑧(∥r‘(oppr𝐾))(1r𝐾)) ↔ (𝑧(∥r𝐿)(1r𝐿) ∧ 𝑧(∥r‘(oppr𝐿))(1r𝐿))))
50 eqidd 2230 . . . 4 (𝜑 → (Unit‘𝐾) = (Unit‘𝐾))
51 eqidd 2230 . . . 4 (𝜑 → (1r𝐾) = (1r𝐾))
52 eqidd 2230 . . . 4 (𝜑 → (∥r𝐾) = (∥r𝐾))
53 eqidd 2230 . . . 4 (𝜑 → (oppr𝐾) = (oppr𝐾))
54 eqidd 2230 . . . 4 (𝜑 → (∥r‘(oppr𝐾)) = (∥r‘(oppr𝐾)))
5550, 51, 52, 53, 54, 11isunitd 14078 . . 3 (𝜑 → (𝑧 ∈ (Unit‘𝐾) ↔ (𝑧(∥r𝐾)(1r𝐾) ∧ 𝑧(∥r‘(oppr𝐾))(1r𝐾))))
56 eqidd 2230 . . . 4 (𝜑 → (Unit‘𝐿) = (Unit‘𝐿))
57 eqidd 2230 . . . 4 (𝜑 → (1r𝐿) = (1r𝐿))
58 eqidd 2230 . . . 4 (𝜑 → (∥r𝐿) = (∥r𝐿))
59 eqidd 2230 . . . 4 (𝜑 → (oppr𝐿) = (oppr𝐿))
60 eqidd 2230 . . . 4 (𝜑 → (∥r‘(oppr𝐿)) = (∥r‘(oppr𝐿)))
6156, 57, 58, 59, 60, 13isunitd 14078 . . 3 (𝜑 → (𝑧 ∈ (Unit‘𝐿) ↔ (𝑧(∥r𝐿)(1r𝐿) ∧ 𝑧(∥r‘(oppr𝐿))(1r𝐿))))
6249, 55, 613bitr4d 220 . 2 (𝜑 → (𝑧 ∈ (Unit‘𝐾) ↔ 𝑧 ∈ (Unit‘𝐿)))
6362eqrdv 2227 1 (𝜑 → (Unit‘𝐾) = (Unit‘𝐿))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200   class class class wbr 4083  cfv 5318  (class class class)co 6007  Basecbs 13040  .rcmulr 13119  1rcur 13930  SRingcsrg 13934  Ringcrg 13967  opprcoppr 14038  rcdsr 14057  Unitcui 14058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-pre-ltirr 8119  ax-pre-lttrn 8121  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-tpos 6397  df-pnf 8191  df-mnf 8192  df-ltxr 8194  df-inn 9119  df-2 9177  df-3 9178  df-ndx 13043  df-slot 13044  df-base 13046  df-sets 13047  df-plusg 13131  df-mulr 13132  df-0g 13299  df-mgm 13397  df-sgrp 13443  df-mnd 13458  df-grp 13544  df-minusg 13545  df-cmn 13831  df-abl 13832  df-mgp 13892  df-ur 13931  df-srg 13935  df-ring 13969  df-oppr 14039  df-dvdsr 14060  df-unit 14061
This theorem is referenced by:  invrpropdg  14121
  Copyright terms: Public domain W3C validator