ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unitpropdg GIF version

Theorem unitpropdg 13317
Description: The set of units depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.)
Hypotheses
Ref Expression
unitpropdg.1 (πœ‘ β†’ 𝐡 = (Baseβ€˜πΎ))
unitpropdg.2 (πœ‘ β†’ 𝐡 = (Baseβ€˜πΏ))
unitpropdg.3 ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ (π‘₯(.rβ€˜πΎ)𝑦) = (π‘₯(.rβ€˜πΏ)𝑦))
unitpropdg.k (πœ‘ β†’ 𝐾 ∈ Ring)
unitpropdg.l (πœ‘ β†’ 𝐿 ∈ Ring)
Assertion
Ref Expression
unitpropdg (πœ‘ β†’ (Unitβ€˜πΎ) = (Unitβ€˜πΏ))
Distinct variable groups:   π‘₯,𝑦,𝐡   π‘₯,𝐾,𝑦   π‘₯,𝐿,𝑦   πœ‘,π‘₯,𝑦

Proof of Theorem unitpropdg
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 unitpropdg.1 . . . . . . 7 (πœ‘ β†’ 𝐡 = (Baseβ€˜πΎ))
2 unitpropdg.2 . . . . . . 7 (πœ‘ β†’ 𝐡 = (Baseβ€˜πΏ))
3 unitpropdg.3 . . . . . . 7 ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ (π‘₯(.rβ€˜πΎ)𝑦) = (π‘₯(.rβ€˜πΏ)𝑦))
4 unitpropdg.k . . . . . . 7 (πœ‘ β†’ 𝐾 ∈ Ring)
5 unitpropdg.l . . . . . . 7 (πœ‘ β†’ 𝐿 ∈ Ring)
61, 2, 3, 4, 5rngidpropdg 13315 . . . . . 6 (πœ‘ β†’ (1rβ€˜πΎ) = (1rβ€˜πΏ))
76breq2d 4016 . . . . 5 (πœ‘ β†’ (𝑧(βˆ₯rβ€˜πΎ)(1rβ€˜πΎ) ↔ 𝑧(βˆ₯rβ€˜πΎ)(1rβ€˜πΏ)))
86breq2d 4016 . . . . 5 (πœ‘ β†’ (𝑧(βˆ₯rβ€˜(opprβ€˜πΎ))(1rβ€˜πΎ) ↔ 𝑧(βˆ₯rβ€˜(opprβ€˜πΎ))(1rβ€˜πΏ)))
97, 8anbi12d 473 . . . 4 (πœ‘ β†’ ((𝑧(βˆ₯rβ€˜πΎ)(1rβ€˜πΎ) ∧ 𝑧(βˆ₯rβ€˜(opprβ€˜πΎ))(1rβ€˜πΎ)) ↔ (𝑧(βˆ₯rβ€˜πΎ)(1rβ€˜πΏ) ∧ 𝑧(βˆ₯rβ€˜(opprβ€˜πΎ))(1rβ€˜πΏ))))
10 ringsrg 13224 . . . . . . . 8 (𝐾 ∈ Ring β†’ 𝐾 ∈ SRing)
114, 10syl 14 . . . . . . 7 (πœ‘ β†’ 𝐾 ∈ SRing)
12 ringsrg 13224 . . . . . . . 8 (𝐿 ∈ Ring β†’ 𝐿 ∈ SRing)
135, 12syl 14 . . . . . . 7 (πœ‘ β†’ 𝐿 ∈ SRing)
141, 2, 3, 11, 13dvdsrpropdg 13316 . . . . . 6 (πœ‘ β†’ (βˆ₯rβ€˜πΎ) = (βˆ₯rβ€˜πΏ))
1514breqd 4015 . . . . 5 (πœ‘ β†’ (𝑧(βˆ₯rβ€˜πΎ)(1rβ€˜πΏ) ↔ 𝑧(βˆ₯rβ€˜πΏ)(1rβ€˜πΏ)))
16 eqid 2177 . . . . . . . . . 10 (opprβ€˜πΎ) = (opprβ€˜πΎ)
17 eqid 2177 . . . . . . . . . 10 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
1816, 17opprbasg 13247 . . . . . . . . 9 (𝐾 ∈ Ring β†’ (Baseβ€˜πΎ) = (Baseβ€˜(opprβ€˜πΎ)))
194, 18syl 14 . . . . . . . 8 (πœ‘ β†’ (Baseβ€˜πΎ) = (Baseβ€˜(opprβ€˜πΎ)))
201, 19eqtrd 2210 . . . . . . 7 (πœ‘ β†’ 𝐡 = (Baseβ€˜(opprβ€˜πΎ)))
21 eqid 2177 . . . . . . . . . 10 (opprβ€˜πΏ) = (opprβ€˜πΏ)
22 eqid 2177 . . . . . . . . . 10 (Baseβ€˜πΏ) = (Baseβ€˜πΏ)
2321, 22opprbasg 13247 . . . . . . . . 9 (𝐿 ∈ Ring β†’ (Baseβ€˜πΏ) = (Baseβ€˜(opprβ€˜πΏ)))
245, 23syl 14 . . . . . . . 8 (πœ‘ β†’ (Baseβ€˜πΏ) = (Baseβ€˜(opprβ€˜πΏ)))
252, 24eqtrd 2210 . . . . . . 7 (πœ‘ β†’ 𝐡 = (Baseβ€˜(opprβ€˜πΏ)))
263ancom2s 566 . . . . . . . 8 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ π‘₯ ∈ 𝐡)) β†’ (π‘₯(.rβ€˜πΎ)𝑦) = (π‘₯(.rβ€˜πΏ)𝑦))
274adantr 276 . . . . . . . . 9 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ π‘₯ ∈ 𝐡)) β†’ 𝐾 ∈ Ring)
28 simprl 529 . . . . . . . . 9 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ π‘₯ ∈ 𝐡)) β†’ 𝑦 ∈ 𝐡)
29 simprr 531 . . . . . . . . 9 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ π‘₯ ∈ 𝐡)) β†’ π‘₯ ∈ 𝐡)
30 eqid 2177 . . . . . . . . . 10 (.rβ€˜πΎ) = (.rβ€˜πΎ)
31 eqid 2177 . . . . . . . . . 10 (.rβ€˜(opprβ€˜πΎ)) = (.rβ€˜(opprβ€˜πΎ))
3217, 30, 16, 31opprmulg 13243 . . . . . . . . 9 ((𝐾 ∈ Ring ∧ 𝑦 ∈ 𝐡 ∧ π‘₯ ∈ 𝐡) β†’ (𝑦(.rβ€˜(opprβ€˜πΎ))π‘₯) = (π‘₯(.rβ€˜πΎ)𝑦))
3327, 28, 29, 32syl3anc 1238 . . . . . . . 8 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ π‘₯ ∈ 𝐡)) β†’ (𝑦(.rβ€˜(opprβ€˜πΎ))π‘₯) = (π‘₯(.rβ€˜πΎ)𝑦))
345adantr 276 . . . . . . . . 9 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ π‘₯ ∈ 𝐡)) β†’ 𝐿 ∈ Ring)
35 eqid 2177 . . . . . . . . . 10 (.rβ€˜πΏ) = (.rβ€˜πΏ)
36 eqid 2177 . . . . . . . . . 10 (.rβ€˜(opprβ€˜πΏ)) = (.rβ€˜(opprβ€˜πΏ))
3722, 35, 21, 36opprmulg 13243 . . . . . . . . 9 ((𝐿 ∈ Ring ∧ 𝑦 ∈ 𝐡 ∧ π‘₯ ∈ 𝐡) β†’ (𝑦(.rβ€˜(opprβ€˜πΏ))π‘₯) = (π‘₯(.rβ€˜πΏ)𝑦))
3834, 28, 29, 37syl3anc 1238 . . . . . . . 8 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ π‘₯ ∈ 𝐡)) β†’ (𝑦(.rβ€˜(opprβ€˜πΏ))π‘₯) = (π‘₯(.rβ€˜πΏ)𝑦))
3926, 33, 383eqtr4d 2220 . . . . . . 7 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ π‘₯ ∈ 𝐡)) β†’ (𝑦(.rβ€˜(opprβ€˜πΎ))π‘₯) = (𝑦(.rβ€˜(opprβ€˜πΏ))π‘₯))
4016opprring 13249 . . . . . . . 8 (𝐾 ∈ Ring β†’ (opprβ€˜πΎ) ∈ Ring)
41 ringsrg 13224 . . . . . . . 8 ((opprβ€˜πΎ) ∈ Ring β†’ (opprβ€˜πΎ) ∈ SRing)
424, 40, 413syl 17 . . . . . . 7 (πœ‘ β†’ (opprβ€˜πΎ) ∈ SRing)
4321opprring 13249 . . . . . . . 8 (𝐿 ∈ Ring β†’ (opprβ€˜πΏ) ∈ Ring)
44 ringsrg 13224 . . . . . . . 8 ((opprβ€˜πΏ) ∈ Ring β†’ (opprβ€˜πΏ) ∈ SRing)
455, 43, 443syl 17 . . . . . . 7 (πœ‘ β†’ (opprβ€˜πΏ) ∈ SRing)
4620, 25, 39, 42, 45dvdsrpropdg 13316 . . . . . 6 (πœ‘ β†’ (βˆ₯rβ€˜(opprβ€˜πΎ)) = (βˆ₯rβ€˜(opprβ€˜πΏ)))
4746breqd 4015 . . . . 5 (πœ‘ β†’ (𝑧(βˆ₯rβ€˜(opprβ€˜πΎ))(1rβ€˜πΏ) ↔ 𝑧(βˆ₯rβ€˜(opprβ€˜πΏ))(1rβ€˜πΏ)))
4815, 47anbi12d 473 . . . 4 (πœ‘ β†’ ((𝑧(βˆ₯rβ€˜πΎ)(1rβ€˜πΏ) ∧ 𝑧(βˆ₯rβ€˜(opprβ€˜πΎ))(1rβ€˜πΏ)) ↔ (𝑧(βˆ₯rβ€˜πΏ)(1rβ€˜πΏ) ∧ 𝑧(βˆ₯rβ€˜(opprβ€˜πΏ))(1rβ€˜πΏ))))
499, 48bitrd 188 . . 3 (πœ‘ β†’ ((𝑧(βˆ₯rβ€˜πΎ)(1rβ€˜πΎ) ∧ 𝑧(βˆ₯rβ€˜(opprβ€˜πΎ))(1rβ€˜πΎ)) ↔ (𝑧(βˆ₯rβ€˜πΏ)(1rβ€˜πΏ) ∧ 𝑧(βˆ₯rβ€˜(opprβ€˜πΏ))(1rβ€˜πΏ))))
50 eqidd 2178 . . . 4 (πœ‘ β†’ (Unitβ€˜πΎ) = (Unitβ€˜πΎ))
51 eqidd 2178 . . . 4 (πœ‘ β†’ (1rβ€˜πΎ) = (1rβ€˜πΎ))
52 eqidd 2178 . . . 4 (πœ‘ β†’ (βˆ₯rβ€˜πΎ) = (βˆ₯rβ€˜πΎ))
53 eqidd 2178 . . . 4 (πœ‘ β†’ (opprβ€˜πΎ) = (opprβ€˜πΎ))
54 eqidd 2178 . . . 4 (πœ‘ β†’ (βˆ₯rβ€˜(opprβ€˜πΎ)) = (βˆ₯rβ€˜(opprβ€˜πΎ)))
5550, 51, 52, 53, 54, 11isunitd 13275 . . 3 (πœ‘ β†’ (𝑧 ∈ (Unitβ€˜πΎ) ↔ (𝑧(βˆ₯rβ€˜πΎ)(1rβ€˜πΎ) ∧ 𝑧(βˆ₯rβ€˜(opprβ€˜πΎ))(1rβ€˜πΎ))))
56 eqidd 2178 . . . 4 (πœ‘ β†’ (Unitβ€˜πΏ) = (Unitβ€˜πΏ))
57 eqidd 2178 . . . 4 (πœ‘ β†’ (1rβ€˜πΏ) = (1rβ€˜πΏ))
58 eqidd 2178 . . . 4 (πœ‘ β†’ (βˆ₯rβ€˜πΏ) = (βˆ₯rβ€˜πΏ))
59 eqidd 2178 . . . 4 (πœ‘ β†’ (opprβ€˜πΏ) = (opprβ€˜πΏ))
60 eqidd 2178 . . . 4 (πœ‘ β†’ (βˆ₯rβ€˜(opprβ€˜πΏ)) = (βˆ₯rβ€˜(opprβ€˜πΏ)))
6156, 57, 58, 59, 60, 13isunitd 13275 . . 3 (πœ‘ β†’ (𝑧 ∈ (Unitβ€˜πΏ) ↔ (𝑧(βˆ₯rβ€˜πΏ)(1rβ€˜πΏ) ∧ 𝑧(βˆ₯rβ€˜(opprβ€˜πΏ))(1rβ€˜πΏ))))
6249, 55, 613bitr4d 220 . 2 (πœ‘ β†’ (𝑧 ∈ (Unitβ€˜πΎ) ↔ 𝑧 ∈ (Unitβ€˜πΏ)))
6362eqrdv 2175 1 (πœ‘ β†’ (Unitβ€˜πΎ) = (Unitβ€˜πΏ))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   = wceq 1353   ∈ wcel 2148   class class class wbr 4004  β€˜cfv 5217  (class class class)co 5875  Basecbs 12462  .rcmulr 12537  1rcur 13142  SRingcsrg 13146  Ringcrg 13179  opprcoppr 13239  βˆ₯rcdsr 13255  Unitcui 13256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-addcom 7911  ax-addass 7913  ax-i2m1 7916  ax-0lt1 7917  ax-0id 7919  ax-rnegex 7920  ax-pre-ltirr 7923  ax-pre-lttrn 7925  ax-pre-ltadd 7927
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-tpos 6246  df-pnf 7994  df-mnf 7995  df-ltxr 7997  df-inn 8920  df-2 8978  df-3 8979  df-ndx 12465  df-slot 12466  df-base 12468  df-sets 12469  df-plusg 12549  df-mulr 12550  df-0g 12707  df-mgm 12775  df-sgrp 12808  df-mnd 12818  df-grp 12880  df-minusg 12881  df-cmn 13090  df-abl 13091  df-mgp 13131  df-ur 13143  df-srg 13147  df-ring 13181  df-oppr 13240  df-dvdsr 13258  df-unit 13259
This theorem is referenced by:  invrpropdg  13318
  Copyright terms: Public domain W3C validator