ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unitpropdg GIF version

Theorem unitpropdg 13704
Description: The set of units depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.)
Hypotheses
Ref Expression
unitpropdg.1 (𝜑𝐵 = (Base‘𝐾))
unitpropdg.2 (𝜑𝐵 = (Base‘𝐿))
unitpropdg.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
unitpropdg.k (𝜑𝐾 ∈ Ring)
unitpropdg.l (𝜑𝐿 ∈ Ring)
Assertion
Ref Expression
unitpropdg (𝜑 → (Unit‘𝐾) = (Unit‘𝐿))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦

Proof of Theorem unitpropdg
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 unitpropdg.1 . . . . . . 7 (𝜑𝐵 = (Base‘𝐾))
2 unitpropdg.2 . . . . . . 7 (𝜑𝐵 = (Base‘𝐿))
3 unitpropdg.3 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
4 unitpropdg.k . . . . . . 7 (𝜑𝐾 ∈ Ring)
5 unitpropdg.l . . . . . . 7 (𝜑𝐿 ∈ Ring)
61, 2, 3, 4, 5rngidpropdg 13702 . . . . . 6 (𝜑 → (1r𝐾) = (1r𝐿))
76breq2d 4045 . . . . 5 (𝜑 → (𝑧(∥r𝐾)(1r𝐾) ↔ 𝑧(∥r𝐾)(1r𝐿)))
86breq2d 4045 . . . . 5 (𝜑 → (𝑧(∥r‘(oppr𝐾))(1r𝐾) ↔ 𝑧(∥r‘(oppr𝐾))(1r𝐿)))
97, 8anbi12d 473 . . . 4 (𝜑 → ((𝑧(∥r𝐾)(1r𝐾) ∧ 𝑧(∥r‘(oppr𝐾))(1r𝐾)) ↔ (𝑧(∥r𝐾)(1r𝐿) ∧ 𝑧(∥r‘(oppr𝐾))(1r𝐿))))
10 ringsrg 13603 . . . . . . . 8 (𝐾 ∈ Ring → 𝐾 ∈ SRing)
114, 10syl 14 . . . . . . 7 (𝜑𝐾 ∈ SRing)
12 ringsrg 13603 . . . . . . . 8 (𝐿 ∈ Ring → 𝐿 ∈ SRing)
135, 12syl 14 . . . . . . 7 (𝜑𝐿 ∈ SRing)
141, 2, 3, 11, 13dvdsrpropdg 13703 . . . . . 6 (𝜑 → (∥r𝐾) = (∥r𝐿))
1514breqd 4044 . . . . 5 (𝜑 → (𝑧(∥r𝐾)(1r𝐿) ↔ 𝑧(∥r𝐿)(1r𝐿)))
16 eqid 2196 . . . . . . . . . 10 (oppr𝐾) = (oppr𝐾)
17 eqid 2196 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
1816, 17opprbasg 13631 . . . . . . . . 9 (𝐾 ∈ Ring → (Base‘𝐾) = (Base‘(oppr𝐾)))
194, 18syl 14 . . . . . . . 8 (𝜑 → (Base‘𝐾) = (Base‘(oppr𝐾)))
201, 19eqtrd 2229 . . . . . . 7 (𝜑𝐵 = (Base‘(oppr𝐾)))
21 eqid 2196 . . . . . . . . . 10 (oppr𝐿) = (oppr𝐿)
22 eqid 2196 . . . . . . . . . 10 (Base‘𝐿) = (Base‘𝐿)
2321, 22opprbasg 13631 . . . . . . . . 9 (𝐿 ∈ Ring → (Base‘𝐿) = (Base‘(oppr𝐿)))
245, 23syl 14 . . . . . . . 8 (𝜑 → (Base‘𝐿) = (Base‘(oppr𝐿)))
252, 24eqtrd 2229 . . . . . . 7 (𝜑𝐵 = (Base‘(oppr𝐿)))
263ancom2s 566 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑥𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
274adantr 276 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑥𝐵)) → 𝐾 ∈ Ring)
28 simprl 529 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑥𝐵)) → 𝑦𝐵)
29 simprr 531 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑥𝐵)) → 𝑥𝐵)
30 eqid 2196 . . . . . . . . . 10 (.r𝐾) = (.r𝐾)
31 eqid 2196 . . . . . . . . . 10 (.r‘(oppr𝐾)) = (.r‘(oppr𝐾))
3217, 30, 16, 31opprmulg 13627 . . . . . . . . 9 ((𝐾 ∈ Ring ∧ 𝑦𝐵𝑥𝐵) → (𝑦(.r‘(oppr𝐾))𝑥) = (𝑥(.r𝐾)𝑦))
3327, 28, 29, 32syl3anc 1249 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑥𝐵)) → (𝑦(.r‘(oppr𝐾))𝑥) = (𝑥(.r𝐾)𝑦))
345adantr 276 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑥𝐵)) → 𝐿 ∈ Ring)
35 eqid 2196 . . . . . . . . . 10 (.r𝐿) = (.r𝐿)
36 eqid 2196 . . . . . . . . . 10 (.r‘(oppr𝐿)) = (.r‘(oppr𝐿))
3722, 35, 21, 36opprmulg 13627 . . . . . . . . 9 ((𝐿 ∈ Ring ∧ 𝑦𝐵𝑥𝐵) → (𝑦(.r‘(oppr𝐿))𝑥) = (𝑥(.r𝐿)𝑦))
3834, 28, 29, 37syl3anc 1249 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑥𝐵)) → (𝑦(.r‘(oppr𝐿))𝑥) = (𝑥(.r𝐿)𝑦))
3926, 33, 383eqtr4d 2239 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑥𝐵)) → (𝑦(.r‘(oppr𝐾))𝑥) = (𝑦(.r‘(oppr𝐿))𝑥))
4016opprring 13635 . . . . . . . 8 (𝐾 ∈ Ring → (oppr𝐾) ∈ Ring)
41 ringsrg 13603 . . . . . . . 8 ((oppr𝐾) ∈ Ring → (oppr𝐾) ∈ SRing)
424, 40, 413syl 17 . . . . . . 7 (𝜑 → (oppr𝐾) ∈ SRing)
4321opprring 13635 . . . . . . . 8 (𝐿 ∈ Ring → (oppr𝐿) ∈ Ring)
44 ringsrg 13603 . . . . . . . 8 ((oppr𝐿) ∈ Ring → (oppr𝐿) ∈ SRing)
455, 43, 443syl 17 . . . . . . 7 (𝜑 → (oppr𝐿) ∈ SRing)
4620, 25, 39, 42, 45dvdsrpropdg 13703 . . . . . 6 (𝜑 → (∥r‘(oppr𝐾)) = (∥r‘(oppr𝐿)))
4746breqd 4044 . . . . 5 (𝜑 → (𝑧(∥r‘(oppr𝐾))(1r𝐿) ↔ 𝑧(∥r‘(oppr𝐿))(1r𝐿)))
4815, 47anbi12d 473 . . . 4 (𝜑 → ((𝑧(∥r𝐾)(1r𝐿) ∧ 𝑧(∥r‘(oppr𝐾))(1r𝐿)) ↔ (𝑧(∥r𝐿)(1r𝐿) ∧ 𝑧(∥r‘(oppr𝐿))(1r𝐿))))
499, 48bitrd 188 . . 3 (𝜑 → ((𝑧(∥r𝐾)(1r𝐾) ∧ 𝑧(∥r‘(oppr𝐾))(1r𝐾)) ↔ (𝑧(∥r𝐿)(1r𝐿) ∧ 𝑧(∥r‘(oppr𝐿))(1r𝐿))))
50 eqidd 2197 . . . 4 (𝜑 → (Unit‘𝐾) = (Unit‘𝐾))
51 eqidd 2197 . . . 4 (𝜑 → (1r𝐾) = (1r𝐾))
52 eqidd 2197 . . . 4 (𝜑 → (∥r𝐾) = (∥r𝐾))
53 eqidd 2197 . . . 4 (𝜑 → (oppr𝐾) = (oppr𝐾))
54 eqidd 2197 . . . 4 (𝜑 → (∥r‘(oppr𝐾)) = (∥r‘(oppr𝐾)))
5550, 51, 52, 53, 54, 11isunitd 13662 . . 3 (𝜑 → (𝑧 ∈ (Unit‘𝐾) ↔ (𝑧(∥r𝐾)(1r𝐾) ∧ 𝑧(∥r‘(oppr𝐾))(1r𝐾))))
56 eqidd 2197 . . . 4 (𝜑 → (Unit‘𝐿) = (Unit‘𝐿))
57 eqidd 2197 . . . 4 (𝜑 → (1r𝐿) = (1r𝐿))
58 eqidd 2197 . . . 4 (𝜑 → (∥r𝐿) = (∥r𝐿))
59 eqidd 2197 . . . 4 (𝜑 → (oppr𝐿) = (oppr𝐿))
60 eqidd 2197 . . . 4 (𝜑 → (∥r‘(oppr𝐿)) = (∥r‘(oppr𝐿)))
6156, 57, 58, 59, 60, 13isunitd 13662 . . 3 (𝜑 → (𝑧 ∈ (Unit‘𝐿) ↔ (𝑧(∥r𝐿)(1r𝐿) ∧ 𝑧(∥r‘(oppr𝐿))(1r𝐿))))
6249, 55, 613bitr4d 220 . 2 (𝜑 → (𝑧 ∈ (Unit‘𝐾) ↔ 𝑧 ∈ (Unit‘𝐿)))
6362eqrdv 2194 1 (𝜑 → (Unit‘𝐾) = (Unit‘𝐿))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167   class class class wbr 4033  cfv 5258  (class class class)co 5922  Basecbs 12678  .rcmulr 12756  1rcur 13515  SRingcsrg 13519  Ringcrg 13552  opprcoppr 13623  rcdsr 13642  Unitcui 13643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-tpos 6303  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-plusg 12768  df-mulr 12769  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-cmn 13416  df-abl 13417  df-mgp 13477  df-ur 13516  df-srg 13520  df-ring 13554  df-oppr 13624  df-dvdsr 13645  df-unit 13646
This theorem is referenced by:  invrpropdg  13705
  Copyright terms: Public domain W3C validator