ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unitpropdg GIF version

Theorem unitpropdg 14077
Description: The set of units depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.)
Hypotheses
Ref Expression
unitpropdg.1 (𝜑𝐵 = (Base‘𝐾))
unitpropdg.2 (𝜑𝐵 = (Base‘𝐿))
unitpropdg.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
unitpropdg.k (𝜑𝐾 ∈ Ring)
unitpropdg.l (𝜑𝐿 ∈ Ring)
Assertion
Ref Expression
unitpropdg (𝜑 → (Unit‘𝐾) = (Unit‘𝐿))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦

Proof of Theorem unitpropdg
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 unitpropdg.1 . . . . . . 7 (𝜑𝐵 = (Base‘𝐾))
2 unitpropdg.2 . . . . . . 7 (𝜑𝐵 = (Base‘𝐿))
3 unitpropdg.3 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
4 unitpropdg.k . . . . . . 7 (𝜑𝐾 ∈ Ring)
5 unitpropdg.l . . . . . . 7 (𝜑𝐿 ∈ Ring)
61, 2, 3, 4, 5rngidpropdg 14075 . . . . . 6 (𝜑 → (1r𝐾) = (1r𝐿))
76breq2d 4074 . . . . 5 (𝜑 → (𝑧(∥r𝐾)(1r𝐾) ↔ 𝑧(∥r𝐾)(1r𝐿)))
86breq2d 4074 . . . . 5 (𝜑 → (𝑧(∥r‘(oppr𝐾))(1r𝐾) ↔ 𝑧(∥r‘(oppr𝐾))(1r𝐿)))
97, 8anbi12d 473 . . . 4 (𝜑 → ((𝑧(∥r𝐾)(1r𝐾) ∧ 𝑧(∥r‘(oppr𝐾))(1r𝐾)) ↔ (𝑧(∥r𝐾)(1r𝐿) ∧ 𝑧(∥r‘(oppr𝐾))(1r𝐿))))
10 ringsrg 13976 . . . . . . . 8 (𝐾 ∈ Ring → 𝐾 ∈ SRing)
114, 10syl 14 . . . . . . 7 (𝜑𝐾 ∈ SRing)
12 ringsrg 13976 . . . . . . . 8 (𝐿 ∈ Ring → 𝐿 ∈ SRing)
135, 12syl 14 . . . . . . 7 (𝜑𝐿 ∈ SRing)
141, 2, 3, 11, 13dvdsrpropdg 14076 . . . . . 6 (𝜑 → (∥r𝐾) = (∥r𝐿))
1514breqd 4073 . . . . 5 (𝜑 → (𝑧(∥r𝐾)(1r𝐿) ↔ 𝑧(∥r𝐿)(1r𝐿)))
16 eqid 2209 . . . . . . . . . 10 (oppr𝐾) = (oppr𝐾)
17 eqid 2209 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
1816, 17opprbasg 14004 . . . . . . . . 9 (𝐾 ∈ Ring → (Base‘𝐾) = (Base‘(oppr𝐾)))
194, 18syl 14 . . . . . . . 8 (𝜑 → (Base‘𝐾) = (Base‘(oppr𝐾)))
201, 19eqtrd 2242 . . . . . . 7 (𝜑𝐵 = (Base‘(oppr𝐾)))
21 eqid 2209 . . . . . . . . . 10 (oppr𝐿) = (oppr𝐿)
22 eqid 2209 . . . . . . . . . 10 (Base‘𝐿) = (Base‘𝐿)
2321, 22opprbasg 14004 . . . . . . . . 9 (𝐿 ∈ Ring → (Base‘𝐿) = (Base‘(oppr𝐿)))
245, 23syl 14 . . . . . . . 8 (𝜑 → (Base‘𝐿) = (Base‘(oppr𝐿)))
252, 24eqtrd 2242 . . . . . . 7 (𝜑𝐵 = (Base‘(oppr𝐿)))
263ancom2s 566 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑥𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
274adantr 276 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑥𝐵)) → 𝐾 ∈ Ring)
28 simprl 529 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑥𝐵)) → 𝑦𝐵)
29 simprr 531 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑥𝐵)) → 𝑥𝐵)
30 eqid 2209 . . . . . . . . . 10 (.r𝐾) = (.r𝐾)
31 eqid 2209 . . . . . . . . . 10 (.r‘(oppr𝐾)) = (.r‘(oppr𝐾))
3217, 30, 16, 31opprmulg 14000 . . . . . . . . 9 ((𝐾 ∈ Ring ∧ 𝑦𝐵𝑥𝐵) → (𝑦(.r‘(oppr𝐾))𝑥) = (𝑥(.r𝐾)𝑦))
3327, 28, 29, 32syl3anc 1252 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑥𝐵)) → (𝑦(.r‘(oppr𝐾))𝑥) = (𝑥(.r𝐾)𝑦))
345adantr 276 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑥𝐵)) → 𝐿 ∈ Ring)
35 eqid 2209 . . . . . . . . . 10 (.r𝐿) = (.r𝐿)
36 eqid 2209 . . . . . . . . . 10 (.r‘(oppr𝐿)) = (.r‘(oppr𝐿))
3722, 35, 21, 36opprmulg 14000 . . . . . . . . 9 ((𝐿 ∈ Ring ∧ 𝑦𝐵𝑥𝐵) → (𝑦(.r‘(oppr𝐿))𝑥) = (𝑥(.r𝐿)𝑦))
3834, 28, 29, 37syl3anc 1252 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑥𝐵)) → (𝑦(.r‘(oppr𝐿))𝑥) = (𝑥(.r𝐿)𝑦))
3926, 33, 383eqtr4d 2252 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑥𝐵)) → (𝑦(.r‘(oppr𝐾))𝑥) = (𝑦(.r‘(oppr𝐿))𝑥))
4016opprring 14008 . . . . . . . 8 (𝐾 ∈ Ring → (oppr𝐾) ∈ Ring)
41 ringsrg 13976 . . . . . . . 8 ((oppr𝐾) ∈ Ring → (oppr𝐾) ∈ SRing)
424, 40, 413syl 17 . . . . . . 7 (𝜑 → (oppr𝐾) ∈ SRing)
4321opprring 14008 . . . . . . . 8 (𝐿 ∈ Ring → (oppr𝐿) ∈ Ring)
44 ringsrg 13976 . . . . . . . 8 ((oppr𝐿) ∈ Ring → (oppr𝐿) ∈ SRing)
455, 43, 443syl 17 . . . . . . 7 (𝜑 → (oppr𝐿) ∈ SRing)
4620, 25, 39, 42, 45dvdsrpropdg 14076 . . . . . 6 (𝜑 → (∥r‘(oppr𝐾)) = (∥r‘(oppr𝐿)))
4746breqd 4073 . . . . 5 (𝜑 → (𝑧(∥r‘(oppr𝐾))(1r𝐿) ↔ 𝑧(∥r‘(oppr𝐿))(1r𝐿)))
4815, 47anbi12d 473 . . . 4 (𝜑 → ((𝑧(∥r𝐾)(1r𝐿) ∧ 𝑧(∥r‘(oppr𝐾))(1r𝐿)) ↔ (𝑧(∥r𝐿)(1r𝐿) ∧ 𝑧(∥r‘(oppr𝐿))(1r𝐿))))
499, 48bitrd 188 . . 3 (𝜑 → ((𝑧(∥r𝐾)(1r𝐾) ∧ 𝑧(∥r‘(oppr𝐾))(1r𝐾)) ↔ (𝑧(∥r𝐿)(1r𝐿) ∧ 𝑧(∥r‘(oppr𝐿))(1r𝐿))))
50 eqidd 2210 . . . 4 (𝜑 → (Unit‘𝐾) = (Unit‘𝐾))
51 eqidd 2210 . . . 4 (𝜑 → (1r𝐾) = (1r𝐾))
52 eqidd 2210 . . . 4 (𝜑 → (∥r𝐾) = (∥r𝐾))
53 eqidd 2210 . . . 4 (𝜑 → (oppr𝐾) = (oppr𝐾))
54 eqidd 2210 . . . 4 (𝜑 → (∥r‘(oppr𝐾)) = (∥r‘(oppr𝐾)))
5550, 51, 52, 53, 54, 11isunitd 14035 . . 3 (𝜑 → (𝑧 ∈ (Unit‘𝐾) ↔ (𝑧(∥r𝐾)(1r𝐾) ∧ 𝑧(∥r‘(oppr𝐾))(1r𝐾))))
56 eqidd 2210 . . . 4 (𝜑 → (Unit‘𝐿) = (Unit‘𝐿))
57 eqidd 2210 . . . 4 (𝜑 → (1r𝐿) = (1r𝐿))
58 eqidd 2210 . . . 4 (𝜑 → (∥r𝐿) = (∥r𝐿))
59 eqidd 2210 . . . 4 (𝜑 → (oppr𝐿) = (oppr𝐿))
60 eqidd 2210 . . . 4 (𝜑 → (∥r‘(oppr𝐿)) = (∥r‘(oppr𝐿)))
6156, 57, 58, 59, 60, 13isunitd 14035 . . 3 (𝜑 → (𝑧 ∈ (Unit‘𝐿) ↔ (𝑧(∥r𝐿)(1r𝐿) ∧ 𝑧(∥r‘(oppr𝐿))(1r𝐿))))
6249, 55, 613bitr4d 220 . 2 (𝜑 → (𝑧 ∈ (Unit‘𝐾) ↔ 𝑧 ∈ (Unit‘𝐿)))
6362eqrdv 2207 1 (𝜑 → (Unit‘𝐾) = (Unit‘𝐿))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1375  wcel 2180   class class class wbr 4062  cfv 5294  (class class class)co 5974  Basecbs 12998  .rcmulr 13077  1rcur 13888  SRingcsrg 13892  Ringcrg 13925  opprcoppr 13996  rcdsr 14015  Unitcui 14016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-addass 8069  ax-i2m1 8072  ax-0lt1 8073  ax-0id 8075  ax-rnegex 8076  ax-pre-ltirr 8079  ax-pre-lttrn 8081  ax-pre-ltadd 8083
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-tpos 6361  df-pnf 8151  df-mnf 8152  df-ltxr 8154  df-inn 9079  df-2 9137  df-3 9138  df-ndx 13001  df-slot 13002  df-base 13004  df-sets 13005  df-plusg 13089  df-mulr 13090  df-0g 13257  df-mgm 13355  df-sgrp 13401  df-mnd 13416  df-grp 13502  df-minusg 13503  df-cmn 13789  df-abl 13790  df-mgp 13850  df-ur 13889  df-srg 13893  df-ring 13927  df-oppr 13997  df-dvdsr 14018  df-unit 14019
This theorem is referenced by:  invrpropdg  14078
  Copyright terms: Public domain W3C validator