| Step | Hyp | Ref
 | Expression | 
| 1 |   | unitpropdg.1 | 
. . . . . . 7
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | 
| 2 |   | unitpropdg.2 | 
. . . . . . 7
⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | 
| 3 |   | unitpropdg.3 | 
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) | 
| 4 |   | unitpropdg.k | 
. . . . . . 7
⊢ (𝜑 → 𝐾 ∈ Ring) | 
| 5 |   | unitpropdg.l | 
. . . . . . 7
⊢ (𝜑 → 𝐿 ∈ Ring) | 
| 6 | 1, 2, 3, 4, 5 | rngidpropdg 13702 | 
. . . . . 6
⊢ (𝜑 → (1r‘𝐾) = (1r‘𝐿)) | 
| 7 | 6 | breq2d 4045 | 
. . . . 5
⊢ (𝜑 → (𝑧(∥r‘𝐾)(1r‘𝐾) ↔ 𝑧(∥r‘𝐾)(1r‘𝐿))) | 
| 8 | 6 | breq2d 4045 | 
. . . . 5
⊢ (𝜑 → (𝑧(∥r‘(oppr‘𝐾))(1r‘𝐾) ↔ 𝑧(∥r‘(oppr‘𝐾))(1r‘𝐿))) | 
| 9 | 7, 8 | anbi12d 473 | 
. . . 4
⊢ (𝜑 → ((𝑧(∥r‘𝐾)(1r‘𝐾) ∧ 𝑧(∥r‘(oppr‘𝐾))(1r‘𝐾)) ↔ (𝑧(∥r‘𝐾)(1r‘𝐿) ∧ 𝑧(∥r‘(oppr‘𝐾))(1r‘𝐿)))) | 
| 10 |   | ringsrg 13603 | 
. . . . . . . 8
⊢ (𝐾 ∈ Ring → 𝐾 ∈ SRing) | 
| 11 | 4, 10 | syl 14 | 
. . . . . . 7
⊢ (𝜑 → 𝐾 ∈ SRing) | 
| 12 |   | ringsrg 13603 | 
. . . . . . . 8
⊢ (𝐿 ∈ Ring → 𝐿 ∈ SRing) | 
| 13 | 5, 12 | syl 14 | 
. . . . . . 7
⊢ (𝜑 → 𝐿 ∈ SRing) | 
| 14 | 1, 2, 3, 11, 13 | dvdsrpropdg 13703 | 
. . . . . 6
⊢ (𝜑 →
(∥r‘𝐾) = (∥r‘𝐿)) | 
| 15 | 14 | breqd 4044 | 
. . . . 5
⊢ (𝜑 → (𝑧(∥r‘𝐾)(1r‘𝐿) ↔ 𝑧(∥r‘𝐿)(1r‘𝐿))) | 
| 16 |   | eqid 2196 | 
. . . . . . . . . 10
⊢
(oppr‘𝐾) = (oppr‘𝐾) | 
| 17 |   | eqid 2196 | 
. . . . . . . . . 10
⊢
(Base‘𝐾) =
(Base‘𝐾) | 
| 18 | 16, 17 | opprbasg 13631 | 
. . . . . . . . 9
⊢ (𝐾 ∈ Ring →
(Base‘𝐾) =
(Base‘(oppr‘𝐾))) | 
| 19 | 4, 18 | syl 14 | 
. . . . . . . 8
⊢ (𝜑 → (Base‘𝐾) =
(Base‘(oppr‘𝐾))) | 
| 20 | 1, 19 | eqtrd 2229 | 
. . . . . . 7
⊢ (𝜑 → 𝐵 =
(Base‘(oppr‘𝐾))) | 
| 21 |   | eqid 2196 | 
. . . . . . . . . 10
⊢
(oppr‘𝐿) = (oppr‘𝐿) | 
| 22 |   | eqid 2196 | 
. . . . . . . . . 10
⊢
(Base‘𝐿) =
(Base‘𝐿) | 
| 23 | 21, 22 | opprbasg 13631 | 
. . . . . . . . 9
⊢ (𝐿 ∈ Ring →
(Base‘𝐿) =
(Base‘(oppr‘𝐿))) | 
| 24 | 5, 23 | syl 14 | 
. . . . . . . 8
⊢ (𝜑 → (Base‘𝐿) =
(Base‘(oppr‘𝐿))) | 
| 25 | 2, 24 | eqtrd 2229 | 
. . . . . . 7
⊢ (𝜑 → 𝐵 =
(Base‘(oppr‘𝐿))) | 
| 26 | 3 | ancom2s 566 | 
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) | 
| 27 | 4 | adantr 276 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → 𝐾 ∈ Ring) | 
| 28 |   | simprl 529 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → 𝑦 ∈ 𝐵) | 
| 29 |   | simprr 531 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → 𝑥 ∈ 𝐵) | 
| 30 |   | eqid 2196 | 
. . . . . . . . . 10
⊢
(.r‘𝐾) = (.r‘𝐾) | 
| 31 |   | eqid 2196 | 
. . . . . . . . . 10
⊢
(.r‘(oppr‘𝐾)) =
(.r‘(oppr‘𝐾)) | 
| 32 | 17, 30, 16, 31 | opprmulg 13627 | 
. . . . . . . . 9
⊢ ((𝐾 ∈ Ring ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑦(.r‘(oppr‘𝐾))𝑥) = (𝑥(.r‘𝐾)𝑦)) | 
| 33 | 27, 28, 29, 32 | syl3anc 1249 | 
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → (𝑦(.r‘(oppr‘𝐾))𝑥) = (𝑥(.r‘𝐾)𝑦)) | 
| 34 | 5 | adantr 276 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → 𝐿 ∈ Ring) | 
| 35 |   | eqid 2196 | 
. . . . . . . . . 10
⊢
(.r‘𝐿) = (.r‘𝐿) | 
| 36 |   | eqid 2196 | 
. . . . . . . . . 10
⊢
(.r‘(oppr‘𝐿)) =
(.r‘(oppr‘𝐿)) | 
| 37 | 22, 35, 21, 36 | opprmulg 13627 | 
. . . . . . . . 9
⊢ ((𝐿 ∈ Ring ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑦(.r‘(oppr‘𝐿))𝑥) = (𝑥(.r‘𝐿)𝑦)) | 
| 38 | 34, 28, 29, 37 | syl3anc 1249 | 
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → (𝑦(.r‘(oppr‘𝐿))𝑥) = (𝑥(.r‘𝐿)𝑦)) | 
| 39 | 26, 33, 38 | 3eqtr4d 2239 | 
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → (𝑦(.r‘(oppr‘𝐾))𝑥) = (𝑦(.r‘(oppr‘𝐿))𝑥)) | 
| 40 | 16 | opprring 13635 | 
. . . . . . . 8
⊢ (𝐾 ∈ Ring →
(oppr‘𝐾) ∈ Ring) | 
| 41 |   | ringsrg 13603 | 
. . . . . . . 8
⊢
((oppr‘𝐾) ∈ Ring →
(oppr‘𝐾) ∈ SRing) | 
| 42 | 4, 40, 41 | 3syl 17 | 
. . . . . . 7
⊢ (𝜑 →
(oppr‘𝐾) ∈ SRing) | 
| 43 | 21 | opprring 13635 | 
. . . . . . . 8
⊢ (𝐿 ∈ Ring →
(oppr‘𝐿) ∈ Ring) | 
| 44 |   | ringsrg 13603 | 
. . . . . . . 8
⊢
((oppr‘𝐿) ∈ Ring →
(oppr‘𝐿) ∈ SRing) | 
| 45 | 5, 43, 44 | 3syl 17 | 
. . . . . . 7
⊢ (𝜑 →
(oppr‘𝐿) ∈ SRing) | 
| 46 | 20, 25, 39, 42, 45 | dvdsrpropdg 13703 | 
. . . . . 6
⊢ (𝜑 →
(∥r‘(oppr‘𝐾)) =
(∥r‘(oppr‘𝐿))) | 
| 47 | 46 | breqd 4044 | 
. . . . 5
⊢ (𝜑 → (𝑧(∥r‘(oppr‘𝐾))(1r‘𝐿) ↔ 𝑧(∥r‘(oppr‘𝐿))(1r‘𝐿))) | 
| 48 | 15, 47 | anbi12d 473 | 
. . . 4
⊢ (𝜑 → ((𝑧(∥r‘𝐾)(1r‘𝐿) ∧ 𝑧(∥r‘(oppr‘𝐾))(1r‘𝐿)) ↔ (𝑧(∥r‘𝐿)(1r‘𝐿) ∧ 𝑧(∥r‘(oppr‘𝐿))(1r‘𝐿)))) | 
| 49 | 9, 48 | bitrd 188 | 
. . 3
⊢ (𝜑 → ((𝑧(∥r‘𝐾)(1r‘𝐾) ∧ 𝑧(∥r‘(oppr‘𝐾))(1r‘𝐾)) ↔ (𝑧(∥r‘𝐿)(1r‘𝐿) ∧ 𝑧(∥r‘(oppr‘𝐿))(1r‘𝐿)))) | 
| 50 |   | eqidd 2197 | 
. . . 4
⊢ (𝜑 → (Unit‘𝐾) = (Unit‘𝐾)) | 
| 51 |   | eqidd 2197 | 
. . . 4
⊢ (𝜑 → (1r‘𝐾) = (1r‘𝐾)) | 
| 52 |   | eqidd 2197 | 
. . . 4
⊢ (𝜑 →
(∥r‘𝐾) = (∥r‘𝐾)) | 
| 53 |   | eqidd 2197 | 
. . . 4
⊢ (𝜑 →
(oppr‘𝐾) = (oppr‘𝐾)) | 
| 54 |   | eqidd 2197 | 
. . . 4
⊢ (𝜑 →
(∥r‘(oppr‘𝐾)) =
(∥r‘(oppr‘𝐾))) | 
| 55 | 50, 51, 52, 53, 54, 11 | isunitd 13662 | 
. . 3
⊢ (𝜑 → (𝑧 ∈ (Unit‘𝐾) ↔ (𝑧(∥r‘𝐾)(1r‘𝐾) ∧ 𝑧(∥r‘(oppr‘𝐾))(1r‘𝐾)))) | 
| 56 |   | eqidd 2197 | 
. . . 4
⊢ (𝜑 → (Unit‘𝐿) = (Unit‘𝐿)) | 
| 57 |   | eqidd 2197 | 
. . . 4
⊢ (𝜑 → (1r‘𝐿) = (1r‘𝐿)) | 
| 58 |   | eqidd 2197 | 
. . . 4
⊢ (𝜑 →
(∥r‘𝐿) = (∥r‘𝐿)) | 
| 59 |   | eqidd 2197 | 
. . . 4
⊢ (𝜑 →
(oppr‘𝐿) = (oppr‘𝐿)) | 
| 60 |   | eqidd 2197 | 
. . . 4
⊢ (𝜑 →
(∥r‘(oppr‘𝐿)) =
(∥r‘(oppr‘𝐿))) | 
| 61 | 56, 57, 58, 59, 60, 13 | isunitd 13662 | 
. . 3
⊢ (𝜑 → (𝑧 ∈ (Unit‘𝐿) ↔ (𝑧(∥r‘𝐿)(1r‘𝐿) ∧ 𝑧(∥r‘(oppr‘𝐿))(1r‘𝐿)))) | 
| 62 | 49, 55, 61 | 3bitr4d 220 | 
. 2
⊢ (𝜑 → (𝑧 ∈ (Unit‘𝐾) ↔ 𝑧 ∈ (Unit‘𝐿))) | 
| 63 | 62 | eqrdv 2194 | 
1
⊢ (𝜑 → (Unit‘𝐾) = (Unit‘𝐿)) |