ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpidpropdg GIF version

Theorem grpidpropdg 13017
Description: If two structures have the same base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, they have the same identity element. (Contributed by Mario Carneiro, 27-Nov-2014.)
Hypotheses
Ref Expression
grpidpropd.1 (𝜑𝐵 = (Base‘𝐾))
grpidpropd.2 (𝜑𝐵 = (Base‘𝐿))
grpidproddg.k (𝜑𝐾𝑉)
grpidproddg.l (𝜑𝐿𝑊)
grpidpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
Assertion
Ref Expression
grpidpropdg (𝜑 → (0g𝐾) = (0g𝐿))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝐿,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem grpidpropdg
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpidpropd.3 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
21eqeq1d 2205 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥(+g𝐾)𝑦) = 𝑦 ↔ (𝑥(+g𝐿)𝑦) = 𝑦))
31oveqrspc2v 5949 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (𝑧(+g𝐾)𝑤) = (𝑧(+g𝐿)𝑤))
43oveqrspc2v 5949 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑥𝐵)) → (𝑦(+g𝐾)𝑥) = (𝑦(+g𝐿)𝑥))
54ancom2s 566 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑦(+g𝐾)𝑥) = (𝑦(+g𝐿)𝑥))
65eqeq1d 2205 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑦(+g𝐾)𝑥) = 𝑦 ↔ (𝑦(+g𝐿)𝑥) = 𝑦))
72, 6anbi12d 473 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (((𝑥(+g𝐾)𝑦) = 𝑦 ∧ (𝑦(+g𝐾)𝑥) = 𝑦) ↔ ((𝑥(+g𝐿)𝑦) = 𝑦 ∧ (𝑦(+g𝐿)𝑥) = 𝑦)))
87anassrs 400 . . . . . 6 (((𝜑𝑥𝐵) ∧ 𝑦𝐵) → (((𝑥(+g𝐾)𝑦) = 𝑦 ∧ (𝑦(+g𝐾)𝑥) = 𝑦) ↔ ((𝑥(+g𝐿)𝑦) = 𝑦 ∧ (𝑦(+g𝐿)𝑥) = 𝑦)))
98ralbidva 2493 . . . . 5 ((𝜑𝑥𝐵) → (∀𝑦𝐵 ((𝑥(+g𝐾)𝑦) = 𝑦 ∧ (𝑦(+g𝐾)𝑥) = 𝑦) ↔ ∀𝑦𝐵 ((𝑥(+g𝐿)𝑦) = 𝑦 ∧ (𝑦(+g𝐿)𝑥) = 𝑦)))
109pm5.32da 452 . . . 4 (𝜑 → ((𝑥𝐵 ∧ ∀𝑦𝐵 ((𝑥(+g𝐾)𝑦) = 𝑦 ∧ (𝑦(+g𝐾)𝑥) = 𝑦)) ↔ (𝑥𝐵 ∧ ∀𝑦𝐵 ((𝑥(+g𝐿)𝑦) = 𝑦 ∧ (𝑦(+g𝐿)𝑥) = 𝑦))))
11 grpidpropd.1 . . . . . 6 (𝜑𝐵 = (Base‘𝐾))
1211eleq2d 2266 . . . . 5 (𝜑 → (𝑥𝐵𝑥 ∈ (Base‘𝐾)))
1311raleqdv 2699 . . . . 5 (𝜑 → (∀𝑦𝐵 ((𝑥(+g𝐾)𝑦) = 𝑦 ∧ (𝑦(+g𝐾)𝑥) = 𝑦) ↔ ∀𝑦 ∈ (Base‘𝐾)((𝑥(+g𝐾)𝑦) = 𝑦 ∧ (𝑦(+g𝐾)𝑥) = 𝑦)))
1412, 13anbi12d 473 . . . 4 (𝜑 → ((𝑥𝐵 ∧ ∀𝑦𝐵 ((𝑥(+g𝐾)𝑦) = 𝑦 ∧ (𝑦(+g𝐾)𝑥) = 𝑦)) ↔ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑦 ∈ (Base‘𝐾)((𝑥(+g𝐾)𝑦) = 𝑦 ∧ (𝑦(+g𝐾)𝑥) = 𝑦))))
15 grpidpropd.2 . . . . . 6 (𝜑𝐵 = (Base‘𝐿))
1615eleq2d 2266 . . . . 5 (𝜑 → (𝑥𝐵𝑥 ∈ (Base‘𝐿)))
1715raleqdv 2699 . . . . 5 (𝜑 → (∀𝑦𝐵 ((𝑥(+g𝐿)𝑦) = 𝑦 ∧ (𝑦(+g𝐿)𝑥) = 𝑦) ↔ ∀𝑦 ∈ (Base‘𝐿)((𝑥(+g𝐿)𝑦) = 𝑦 ∧ (𝑦(+g𝐿)𝑥) = 𝑦)))
1816, 17anbi12d 473 . . . 4 (𝜑 → ((𝑥𝐵 ∧ ∀𝑦𝐵 ((𝑥(+g𝐿)𝑦) = 𝑦 ∧ (𝑦(+g𝐿)𝑥) = 𝑦)) ↔ (𝑥 ∈ (Base‘𝐿) ∧ ∀𝑦 ∈ (Base‘𝐿)((𝑥(+g𝐿)𝑦) = 𝑦 ∧ (𝑦(+g𝐿)𝑥) = 𝑦))))
1910, 14, 183bitr3d 218 . . 3 (𝜑 → ((𝑥 ∈ (Base‘𝐾) ∧ ∀𝑦 ∈ (Base‘𝐾)((𝑥(+g𝐾)𝑦) = 𝑦 ∧ (𝑦(+g𝐾)𝑥) = 𝑦)) ↔ (𝑥 ∈ (Base‘𝐿) ∧ ∀𝑦 ∈ (Base‘𝐿)((𝑥(+g𝐿)𝑦) = 𝑦 ∧ (𝑦(+g𝐿)𝑥) = 𝑦))))
2019iotabidv 5241 . 2 (𝜑 → (℩𝑥(𝑥 ∈ (Base‘𝐾) ∧ ∀𝑦 ∈ (Base‘𝐾)((𝑥(+g𝐾)𝑦) = 𝑦 ∧ (𝑦(+g𝐾)𝑥) = 𝑦))) = (℩𝑥(𝑥 ∈ (Base‘𝐿) ∧ ∀𝑦 ∈ (Base‘𝐿)((𝑥(+g𝐿)𝑦) = 𝑦 ∧ (𝑦(+g𝐿)𝑥) = 𝑦))))
21 grpidproddg.k . . 3 (𝜑𝐾𝑉)
22 eqid 2196 . . . 4 (Base‘𝐾) = (Base‘𝐾)
23 eqid 2196 . . . 4 (+g𝐾) = (+g𝐾)
24 eqid 2196 . . . 4 (0g𝐾) = (0g𝐾)
2522, 23, 24grpidvalg 13016 . . 3 (𝐾𝑉 → (0g𝐾) = (℩𝑥(𝑥 ∈ (Base‘𝐾) ∧ ∀𝑦 ∈ (Base‘𝐾)((𝑥(+g𝐾)𝑦) = 𝑦 ∧ (𝑦(+g𝐾)𝑥) = 𝑦))))
2621, 25syl 14 . 2 (𝜑 → (0g𝐾) = (℩𝑥(𝑥 ∈ (Base‘𝐾) ∧ ∀𝑦 ∈ (Base‘𝐾)((𝑥(+g𝐾)𝑦) = 𝑦 ∧ (𝑦(+g𝐾)𝑥) = 𝑦))))
27 grpidproddg.l . . 3 (𝜑𝐿𝑊)
28 eqid 2196 . . . 4 (Base‘𝐿) = (Base‘𝐿)
29 eqid 2196 . . . 4 (+g𝐿) = (+g𝐿)
30 eqid 2196 . . . 4 (0g𝐿) = (0g𝐿)
3128, 29, 30grpidvalg 13016 . . 3 (𝐿𝑊 → (0g𝐿) = (℩𝑥(𝑥 ∈ (Base‘𝐿) ∧ ∀𝑦 ∈ (Base‘𝐿)((𝑥(+g𝐿)𝑦) = 𝑦 ∧ (𝑦(+g𝐿)𝑥) = 𝑦))))
3227, 31syl 14 . 2 (𝜑 → (0g𝐿) = (℩𝑥(𝑥 ∈ (Base‘𝐿) ∧ ∀𝑦 ∈ (Base‘𝐿)((𝑥(+g𝐿)𝑦) = 𝑦 ∧ (𝑦(+g𝐿)𝑥) = 𝑦))))
3320, 26, 323eqtr4d 2239 1 (𝜑 → (0g𝐾) = (0g𝐿))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wral 2475  cio 5217  cfv 5258  (class class class)co 5922  Basecbs 12678  +gcplusg 12755  0gc0g 12927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-riota 5877  df-ov 5925  df-inn 8991  df-ndx 12681  df-slot 12682  df-base 12684  df-0g 12929
This theorem is referenced by:  gsumpropd  13035  gsumpropd2  13036  mhmpropd  13098  grppropd  13149  grpinvpropdg  13207  mulgpropdg  13294  rngidpropdg  13702  sralmod0g  14007
  Copyright terms: Public domain W3C validator