| Step | Hyp | Ref
| Expression |
| 1 | | grpidpropd.3 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
| 2 | 1 | eqeq1d 2205 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑥(+g‘𝐾)𝑦) = 𝑦 ↔ (𝑥(+g‘𝐿)𝑦) = 𝑦)) |
| 3 | 1 | oveqrspc2v 5949 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑧(+g‘𝐾)𝑤) = (𝑧(+g‘𝐿)𝑤)) |
| 4 | 3 | oveqrspc2v 5949 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → (𝑦(+g‘𝐾)𝑥) = (𝑦(+g‘𝐿)𝑥)) |
| 5 | 4 | ancom2s 566 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑦(+g‘𝐾)𝑥) = (𝑦(+g‘𝐿)𝑥)) |
| 6 | 5 | eqeq1d 2205 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑦(+g‘𝐾)𝑥) = 𝑦 ↔ (𝑦(+g‘𝐿)𝑥) = 𝑦)) |
| 7 | 2, 6 | anbi12d 473 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (((𝑥(+g‘𝐾)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐾)𝑥) = 𝑦) ↔ ((𝑥(+g‘𝐿)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐿)𝑥) = 𝑦))) |
| 8 | 7 | anassrs 400 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → (((𝑥(+g‘𝐾)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐾)𝑥) = 𝑦) ↔ ((𝑥(+g‘𝐿)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐿)𝑥) = 𝑦))) |
| 9 | 8 | ralbidva 2493 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (∀𝑦 ∈ 𝐵 ((𝑥(+g‘𝐾)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐾)𝑥) = 𝑦) ↔ ∀𝑦 ∈ 𝐵 ((𝑥(+g‘𝐿)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐿)𝑥) = 𝑦))) |
| 10 | 9 | pm5.32da 452 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑥(+g‘𝐾)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐾)𝑥) = 𝑦)) ↔ (𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑥(+g‘𝐿)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐿)𝑥) = 𝑦)))) |
| 11 | | grpidpropd.1 |
. . . . . 6
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
| 12 | 11 | eleq2d 2266 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ (Base‘𝐾))) |
| 13 | 11 | raleqdv 2699 |
. . . . 5
⊢ (𝜑 → (∀𝑦 ∈ 𝐵 ((𝑥(+g‘𝐾)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐾)𝑥) = 𝑦) ↔ ∀𝑦 ∈ (Base‘𝐾)((𝑥(+g‘𝐾)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐾)𝑥) = 𝑦))) |
| 14 | 12, 13 | anbi12d 473 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑥(+g‘𝐾)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐾)𝑥) = 𝑦)) ↔ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑦 ∈ (Base‘𝐾)((𝑥(+g‘𝐾)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐾)𝑥) = 𝑦)))) |
| 15 | | grpidpropd.2 |
. . . . . 6
⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
| 16 | 15 | eleq2d 2266 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ (Base‘𝐿))) |
| 17 | 15 | raleqdv 2699 |
. . . . 5
⊢ (𝜑 → (∀𝑦 ∈ 𝐵 ((𝑥(+g‘𝐿)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐿)𝑥) = 𝑦) ↔ ∀𝑦 ∈ (Base‘𝐿)((𝑥(+g‘𝐿)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐿)𝑥) = 𝑦))) |
| 18 | 16, 17 | anbi12d 473 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑥(+g‘𝐿)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐿)𝑥) = 𝑦)) ↔ (𝑥 ∈ (Base‘𝐿) ∧ ∀𝑦 ∈ (Base‘𝐿)((𝑥(+g‘𝐿)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐿)𝑥) = 𝑦)))) |
| 19 | 10, 14, 18 | 3bitr3d 218 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ (Base‘𝐾) ∧ ∀𝑦 ∈ (Base‘𝐾)((𝑥(+g‘𝐾)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐾)𝑥) = 𝑦)) ↔ (𝑥 ∈ (Base‘𝐿) ∧ ∀𝑦 ∈ (Base‘𝐿)((𝑥(+g‘𝐿)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐿)𝑥) = 𝑦)))) |
| 20 | 19 | iotabidv 5241 |
. 2
⊢ (𝜑 → (℩𝑥(𝑥 ∈ (Base‘𝐾) ∧ ∀𝑦 ∈ (Base‘𝐾)((𝑥(+g‘𝐾)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐾)𝑥) = 𝑦))) = (℩𝑥(𝑥 ∈ (Base‘𝐿) ∧ ∀𝑦 ∈ (Base‘𝐿)((𝑥(+g‘𝐿)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐿)𝑥) = 𝑦)))) |
| 21 | | grpidproddg.k |
. . 3
⊢ (𝜑 → 𝐾 ∈ 𝑉) |
| 22 | | eqid 2196 |
. . . 4
⊢
(Base‘𝐾) =
(Base‘𝐾) |
| 23 | | eqid 2196 |
. . . 4
⊢
(+g‘𝐾) = (+g‘𝐾) |
| 24 | | eqid 2196 |
. . . 4
⊢
(0g‘𝐾) = (0g‘𝐾) |
| 25 | 22, 23, 24 | grpidvalg 13016 |
. . 3
⊢ (𝐾 ∈ 𝑉 → (0g‘𝐾) = (℩𝑥(𝑥 ∈ (Base‘𝐾) ∧ ∀𝑦 ∈ (Base‘𝐾)((𝑥(+g‘𝐾)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐾)𝑥) = 𝑦)))) |
| 26 | 21, 25 | syl 14 |
. 2
⊢ (𝜑 → (0g‘𝐾) = (℩𝑥(𝑥 ∈ (Base‘𝐾) ∧ ∀𝑦 ∈ (Base‘𝐾)((𝑥(+g‘𝐾)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐾)𝑥) = 𝑦)))) |
| 27 | | grpidproddg.l |
. . 3
⊢ (𝜑 → 𝐿 ∈ 𝑊) |
| 28 | | eqid 2196 |
. . . 4
⊢
(Base‘𝐿) =
(Base‘𝐿) |
| 29 | | eqid 2196 |
. . . 4
⊢
(+g‘𝐿) = (+g‘𝐿) |
| 30 | | eqid 2196 |
. . . 4
⊢
(0g‘𝐿) = (0g‘𝐿) |
| 31 | 28, 29, 30 | grpidvalg 13016 |
. . 3
⊢ (𝐿 ∈ 𝑊 → (0g‘𝐿) = (℩𝑥(𝑥 ∈ (Base‘𝐿) ∧ ∀𝑦 ∈ (Base‘𝐿)((𝑥(+g‘𝐿)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐿)𝑥) = 𝑦)))) |
| 32 | 27, 31 | syl 14 |
. 2
⊢ (𝜑 → (0g‘𝐿) = (℩𝑥(𝑥 ∈ (Base‘𝐿) ∧ ∀𝑦 ∈ (Base‘𝐿)((𝑥(+g‘𝐿)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐿)𝑥) = 𝑦)))) |
| 33 | 20, 26, 32 | 3eqtr4d 2239 |
1
⊢ (𝜑 → (0g‘𝐾) = (0g‘𝐿)) |