![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > prarloclem4 | GIF version |
Description: A slight rearrangement of prarloclem3 7056. Lemma for prarloc 7062. (Contributed by Jim Kingdon, 4-Nov-2019.) |
Ref | Expression |
---|---|
prarloclem4 | ⊢ (((〈𝐿, 𝑈〉 ∈ P ∧ 𝐴 ∈ 𝐿) ∧ 𝑃 ∈ Q) → (∃𝑥 ∈ ω ∃𝑦 ∈ ω ((𝐴 +Q0 ([〈𝑦, 1𝑜〉] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜〉] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([〈𝑗, 1𝑜〉] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈(𝑗 +𝑜 2𝑜), 1𝑜〉] ~Q ·Q 𝑃)) ∈ 𝑈))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prarloclem3 7056 | . . . . 5 ⊢ (((〈𝐿, 𝑈〉 ∈ P ∧ 𝐴 ∈ 𝐿) ∧ (𝑥 ∈ ω ∧ 𝑃 ∈ Q) ∧ ∃𝑦 ∈ ω ((𝐴 +Q0 ([〈𝑦, 1𝑜〉] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜〉] ~Q ·Q 𝑃)) ∈ 𝑈)) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([〈𝑗, 1𝑜〉] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈(𝑗 +𝑜 2𝑜), 1𝑜〉] ~Q ·Q 𝑃)) ∈ 𝑈)) | |
2 | 1 | 3expia 1145 | . . . 4 ⊢ (((〈𝐿, 𝑈〉 ∈ P ∧ 𝐴 ∈ 𝐿) ∧ (𝑥 ∈ ω ∧ 𝑃 ∈ Q)) → (∃𝑦 ∈ ω ((𝐴 +Q0 ([〈𝑦, 1𝑜〉] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜〉] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([〈𝑗, 1𝑜〉] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈(𝑗 +𝑜 2𝑜), 1𝑜〉] ~Q ·Q 𝑃)) ∈ 𝑈))) |
3 | 2 | ancom2s 533 | . . 3 ⊢ (((〈𝐿, 𝑈〉 ∈ P ∧ 𝐴 ∈ 𝐿) ∧ (𝑃 ∈ Q ∧ 𝑥 ∈ ω)) → (∃𝑦 ∈ ω ((𝐴 +Q0 ([〈𝑦, 1𝑜〉] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜〉] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([〈𝑗, 1𝑜〉] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈(𝑗 +𝑜 2𝑜), 1𝑜〉] ~Q ·Q 𝑃)) ∈ 𝑈))) |
4 | 3 | anassrs 392 | . 2 ⊢ ((((〈𝐿, 𝑈〉 ∈ P ∧ 𝐴 ∈ 𝐿) ∧ 𝑃 ∈ Q) ∧ 𝑥 ∈ ω) → (∃𝑦 ∈ ω ((𝐴 +Q0 ([〈𝑦, 1𝑜〉] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜〉] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([〈𝑗, 1𝑜〉] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈(𝑗 +𝑜 2𝑜), 1𝑜〉] ~Q ·Q 𝑃)) ∈ 𝑈))) |
5 | 4 | rexlimdva 2489 | 1 ⊢ (((〈𝐿, 𝑈〉 ∈ P ∧ 𝐴 ∈ 𝐿) ∧ 𝑃 ∈ Q) → (∃𝑥 ∈ ω ∃𝑦 ∈ ω ((𝐴 +Q0 ([〈𝑦, 1𝑜〉] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜〉] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([〈𝑗, 1𝑜〉] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈(𝑗 +𝑜 2𝑜), 1𝑜〉] ~Q ·Q 𝑃)) ∈ 𝑈))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ∈ wcel 1438 ∃wrex 2360 〈cop 3449 ωcom 4405 (class class class)co 5652 1𝑜c1o 6174 2𝑜c2o 6175 +𝑜 coa 6178 [cec 6290 ~Q ceq 6838 Qcnq 6839 +Q cplq 6841 ·Q cmq 6842 ~Q0 ceq0 6845 +Q0 cplq0 6848 ·Q0 cmq0 6849 Pcnp 6850 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-13 1449 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-coll 3954 ax-sep 3957 ax-nul 3965 ax-pow 4009 ax-pr 4036 ax-un 4260 ax-setind 4353 ax-iinf 4403 |
This theorem depends on definitions: df-bi 115 df-dc 781 df-3or 925 df-3an 926 df-tru 1292 df-fal 1295 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ne 2256 df-ral 2364 df-rex 2365 df-reu 2366 df-rab 2368 df-v 2621 df-sbc 2841 df-csb 2934 df-dif 3001 df-un 3003 df-in 3005 df-ss 3012 df-nul 3287 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-uni 3654 df-int 3689 df-iun 3732 df-br 3846 df-opab 3900 df-mpt 3901 df-tr 3937 df-eprel 4116 df-id 4120 df-iord 4193 df-on 4195 df-suc 4198 df-iom 4406 df-xp 4444 df-rel 4445 df-cnv 4446 df-co 4447 df-dm 4448 df-rn 4449 df-res 4450 df-ima 4451 df-iota 4980 df-fun 5017 df-fn 5018 df-f 5019 df-f1 5020 df-fo 5021 df-f1o 5022 df-fv 5023 df-ov 5655 df-oprab 5656 df-mpt2 5657 df-1st 5911 df-2nd 5912 df-recs 6070 df-irdg 6135 df-1o 6181 df-2o 6182 df-oadd 6185 df-omul 6186 df-er 6292 df-ec 6294 df-qs 6298 df-ni 6863 df-pli 6864 df-mi 6865 df-lti 6866 df-plpq 6903 df-mpq 6904 df-enq 6906 df-nqqs 6907 df-plqqs 6908 df-mqqs 6909 df-ltnqqs 6912 df-enq0 6983 df-nq0 6984 df-plq0 6986 df-mq0 6987 df-inp 7025 |
This theorem is referenced by: prarloclem 7060 |
Copyright terms: Public domain | W3C validator |