| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prarloclem4 | GIF version | ||
| Description: A slight rearrangement of prarloclem3 7581. Lemma for prarloc 7587. (Contributed by Jim Kingdon, 4-Nov-2019.) |
| Ref | Expression |
|---|---|
| prarloclem4 | ⊢ (((〈𝐿, 𝑈〉 ∈ P ∧ 𝐴 ∈ 𝐿) ∧ 𝑃 ∈ Q) → (∃𝑥 ∈ ω ∃𝑦 ∈ ω ((𝐴 +Q0 ([〈𝑦, 1o〉] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈((𝑦 +o 2o) +o 𝑥), 1o〉] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([〈𝑗, 1o〉] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈(𝑗 +o 2o), 1o〉] ~Q ·Q 𝑃)) ∈ 𝑈))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prarloclem3 7581 | . . . . 5 ⊢ (((〈𝐿, 𝑈〉 ∈ P ∧ 𝐴 ∈ 𝐿) ∧ (𝑥 ∈ ω ∧ 𝑃 ∈ Q) ∧ ∃𝑦 ∈ ω ((𝐴 +Q0 ([〈𝑦, 1o〉] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈((𝑦 +o 2o) +o 𝑥), 1o〉] ~Q ·Q 𝑃)) ∈ 𝑈)) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([〈𝑗, 1o〉] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈(𝑗 +o 2o), 1o〉] ~Q ·Q 𝑃)) ∈ 𝑈)) | |
| 2 | 1 | 3expia 1207 | . . . 4 ⊢ (((〈𝐿, 𝑈〉 ∈ P ∧ 𝐴 ∈ 𝐿) ∧ (𝑥 ∈ ω ∧ 𝑃 ∈ Q)) → (∃𝑦 ∈ ω ((𝐴 +Q0 ([〈𝑦, 1o〉] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈((𝑦 +o 2o) +o 𝑥), 1o〉] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([〈𝑗, 1o〉] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈(𝑗 +o 2o), 1o〉] ~Q ·Q 𝑃)) ∈ 𝑈))) |
| 3 | 2 | ancom2s 566 | . . 3 ⊢ (((〈𝐿, 𝑈〉 ∈ P ∧ 𝐴 ∈ 𝐿) ∧ (𝑃 ∈ Q ∧ 𝑥 ∈ ω)) → (∃𝑦 ∈ ω ((𝐴 +Q0 ([〈𝑦, 1o〉] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈((𝑦 +o 2o) +o 𝑥), 1o〉] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([〈𝑗, 1o〉] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈(𝑗 +o 2o), 1o〉] ~Q ·Q 𝑃)) ∈ 𝑈))) |
| 4 | 3 | anassrs 400 | . 2 ⊢ ((((〈𝐿, 𝑈〉 ∈ P ∧ 𝐴 ∈ 𝐿) ∧ 𝑃 ∈ Q) ∧ 𝑥 ∈ ω) → (∃𝑦 ∈ ω ((𝐴 +Q0 ([〈𝑦, 1o〉] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈((𝑦 +o 2o) +o 𝑥), 1o〉] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([〈𝑗, 1o〉] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈(𝑗 +o 2o), 1o〉] ~Q ·Q 𝑃)) ∈ 𝑈))) |
| 5 | 4 | rexlimdva 2614 | 1 ⊢ (((〈𝐿, 𝑈〉 ∈ P ∧ 𝐴 ∈ 𝐿) ∧ 𝑃 ∈ Q) → (∃𝑥 ∈ ω ∃𝑦 ∈ ω ((𝐴 +Q0 ([〈𝑦, 1o〉] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈((𝑦 +o 2o) +o 𝑥), 1o〉] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([〈𝑗, 1o〉] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈(𝑗 +o 2o), 1o〉] ~Q ·Q 𝑃)) ∈ 𝑈))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 ∃wrex 2476 〈cop 3626 ωcom 4627 (class class class)co 5925 1oc1o 6476 2oc2o 6477 +o coa 6480 [cec 6599 ~Q ceq 7363 Qcnq 7364 +Q cplq 7366 ·Q cmq 7367 ~Q0 ceq0 7370 +Q0 cplq0 7373 ·Q0 cmq0 7374 Pcnp 7375 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-eprel 4325 df-id 4329 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-irdg 6437 df-1o 6483 df-2o 6484 df-oadd 6487 df-omul 6488 df-er 6601 df-ec 6603 df-qs 6607 df-ni 7388 df-pli 7389 df-mi 7390 df-lti 7391 df-plpq 7428 df-mpq 7429 df-enq 7431 df-nqqs 7432 df-plqqs 7433 df-mqqs 7434 df-ltnqqs 7437 df-enq0 7508 df-nq0 7509 df-plq0 7511 df-mq0 7512 df-inp 7550 |
| This theorem is referenced by: prarloclem 7585 |
| Copyright terms: Public domain | W3C validator |