ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloclem4 GIF version

Theorem prarloclem4 7499
Description: A slight rearrangement of prarloclem3 7498. Lemma for prarloc 7504. (Contributed by Jim Kingdon, 4-Nov-2019.)
Assertion
Ref Expression
prarloclem4 (((โŸจ๐ฟ, ๐‘ˆโŸฉ โˆˆ P โˆง ๐ด โˆˆ ๐ฟ) โˆง ๐‘ƒ โˆˆ Q) โ†’ (โˆƒ๐‘ฅ โˆˆ ฯ‰ โˆƒ๐‘ฆ โˆˆ ฯ‰ ((๐ด +Q0 ([โŸจ๐‘ฆ, 1oโŸฉ] ~Q0 ยทQ0 ๐‘ƒ)) โˆˆ ๐ฟ โˆง (๐ด +Q ([โŸจ((๐‘ฆ +o 2o) +o ๐‘ฅ), 1oโŸฉ] ~Q ยทQ ๐‘ƒ)) โˆˆ ๐‘ˆ) โ†’ โˆƒ๐‘— โˆˆ ฯ‰ ((๐ด +Q0 ([โŸจ๐‘—, 1oโŸฉ] ~Q0 ยทQ0 ๐‘ƒ)) โˆˆ ๐ฟ โˆง (๐ด +Q ([โŸจ(๐‘— +o 2o), 1oโŸฉ] ~Q ยทQ ๐‘ƒ)) โˆˆ ๐‘ˆ)))
Distinct variable groups:   ๐ด,๐‘—,๐‘ฅ,๐‘ฆ   ๐‘—,๐ฟ,๐‘ฅ,๐‘ฆ   ๐‘ƒ,๐‘—,๐‘ฅ,๐‘ฆ   ๐‘ˆ,๐‘—,๐‘ฅ,๐‘ฆ

Proof of Theorem prarloclem4
StepHypRef Expression
1 prarloclem3 7498 . . . . 5 (((โŸจ๐ฟ, ๐‘ˆโŸฉ โˆˆ P โˆง ๐ด โˆˆ ๐ฟ) โˆง (๐‘ฅ โˆˆ ฯ‰ โˆง ๐‘ƒ โˆˆ Q) โˆง โˆƒ๐‘ฆ โˆˆ ฯ‰ ((๐ด +Q0 ([โŸจ๐‘ฆ, 1oโŸฉ] ~Q0 ยทQ0 ๐‘ƒ)) โˆˆ ๐ฟ โˆง (๐ด +Q ([โŸจ((๐‘ฆ +o 2o) +o ๐‘ฅ), 1oโŸฉ] ~Q ยทQ ๐‘ƒ)) โˆˆ ๐‘ˆ)) โ†’ โˆƒ๐‘— โˆˆ ฯ‰ ((๐ด +Q0 ([โŸจ๐‘—, 1oโŸฉ] ~Q0 ยทQ0 ๐‘ƒ)) โˆˆ ๐ฟ โˆง (๐ด +Q ([โŸจ(๐‘— +o 2o), 1oโŸฉ] ~Q ยทQ ๐‘ƒ)) โˆˆ ๐‘ˆ))
213expia 1205 . . . 4 (((โŸจ๐ฟ, ๐‘ˆโŸฉ โˆˆ P โˆง ๐ด โˆˆ ๐ฟ) โˆง (๐‘ฅ โˆˆ ฯ‰ โˆง ๐‘ƒ โˆˆ Q)) โ†’ (โˆƒ๐‘ฆ โˆˆ ฯ‰ ((๐ด +Q0 ([โŸจ๐‘ฆ, 1oโŸฉ] ~Q0 ยทQ0 ๐‘ƒ)) โˆˆ ๐ฟ โˆง (๐ด +Q ([โŸจ((๐‘ฆ +o 2o) +o ๐‘ฅ), 1oโŸฉ] ~Q ยทQ ๐‘ƒ)) โˆˆ ๐‘ˆ) โ†’ โˆƒ๐‘— โˆˆ ฯ‰ ((๐ด +Q0 ([โŸจ๐‘—, 1oโŸฉ] ~Q0 ยทQ0 ๐‘ƒ)) โˆˆ ๐ฟ โˆง (๐ด +Q ([โŸจ(๐‘— +o 2o), 1oโŸฉ] ~Q ยทQ ๐‘ƒ)) โˆˆ ๐‘ˆ)))
32ancom2s 566 . . 3 (((โŸจ๐ฟ, ๐‘ˆโŸฉ โˆˆ P โˆง ๐ด โˆˆ ๐ฟ) โˆง (๐‘ƒ โˆˆ Q โˆง ๐‘ฅ โˆˆ ฯ‰)) โ†’ (โˆƒ๐‘ฆ โˆˆ ฯ‰ ((๐ด +Q0 ([โŸจ๐‘ฆ, 1oโŸฉ] ~Q0 ยทQ0 ๐‘ƒ)) โˆˆ ๐ฟ โˆง (๐ด +Q ([โŸจ((๐‘ฆ +o 2o) +o ๐‘ฅ), 1oโŸฉ] ~Q ยทQ ๐‘ƒ)) โˆˆ ๐‘ˆ) โ†’ โˆƒ๐‘— โˆˆ ฯ‰ ((๐ด +Q0 ([โŸจ๐‘—, 1oโŸฉ] ~Q0 ยทQ0 ๐‘ƒ)) โˆˆ ๐ฟ โˆง (๐ด +Q ([โŸจ(๐‘— +o 2o), 1oโŸฉ] ~Q ยทQ ๐‘ƒ)) โˆˆ ๐‘ˆ)))
43anassrs 400 . 2 ((((โŸจ๐ฟ, ๐‘ˆโŸฉ โˆˆ P โˆง ๐ด โˆˆ ๐ฟ) โˆง ๐‘ƒ โˆˆ Q) โˆง ๐‘ฅ โˆˆ ฯ‰) โ†’ (โˆƒ๐‘ฆ โˆˆ ฯ‰ ((๐ด +Q0 ([โŸจ๐‘ฆ, 1oโŸฉ] ~Q0 ยทQ0 ๐‘ƒ)) โˆˆ ๐ฟ โˆง (๐ด +Q ([โŸจ((๐‘ฆ +o 2o) +o ๐‘ฅ), 1oโŸฉ] ~Q ยทQ ๐‘ƒ)) โˆˆ ๐‘ˆ) โ†’ โˆƒ๐‘— โˆˆ ฯ‰ ((๐ด +Q0 ([โŸจ๐‘—, 1oโŸฉ] ~Q0 ยทQ0 ๐‘ƒ)) โˆˆ ๐ฟ โˆง (๐ด +Q ([โŸจ(๐‘— +o 2o), 1oโŸฉ] ~Q ยทQ ๐‘ƒ)) โˆˆ ๐‘ˆ)))
54rexlimdva 2594 1 (((โŸจ๐ฟ, ๐‘ˆโŸฉ โˆˆ P โˆง ๐ด โˆˆ ๐ฟ) โˆง ๐‘ƒ โˆˆ Q) โ†’ (โˆƒ๐‘ฅ โˆˆ ฯ‰ โˆƒ๐‘ฆ โˆˆ ฯ‰ ((๐ด +Q0 ([โŸจ๐‘ฆ, 1oโŸฉ] ~Q0 ยทQ0 ๐‘ƒ)) โˆˆ ๐ฟ โˆง (๐ด +Q ([โŸจ((๐‘ฆ +o 2o) +o ๐‘ฅ), 1oโŸฉ] ~Q ยทQ ๐‘ƒ)) โˆˆ ๐‘ˆ) โ†’ โˆƒ๐‘— โˆˆ ฯ‰ ((๐ด +Q0 ([โŸจ๐‘—, 1oโŸฉ] ~Q0 ยทQ0 ๐‘ƒ)) โˆˆ ๐ฟ โˆง (๐ด +Q ([โŸจ(๐‘— +o 2o), 1oโŸฉ] ~Q ยทQ ๐‘ƒ)) โˆˆ ๐‘ˆ)))
Colors of variables: wff set class
Syntax hints:   โ†’ wi 4   โˆง wa 104   โˆˆ wcel 2148  โˆƒwrex 2456  โŸจcop 3597  ฯ‰com 4591  (class class class)co 5877  1oc1o 6412  2oc2o 6413   +o coa 6416  [cec 6535   ~Q ceq 7280  Qcnq 7281   +Q cplq 7283   ยทQ cmq 7284   ~Q0 ceq0 7287   +Q0 cplq0 7290   ยทQ0 cmq0 7291  Pcnp 7292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-eprel 4291  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-1o 6419  df-2o 6420  df-oadd 6423  df-omul 6424  df-er 6537  df-ec 6539  df-qs 6543  df-ni 7305  df-pli 7306  df-mi 7307  df-lti 7308  df-plpq 7345  df-mpq 7346  df-enq 7348  df-nqqs 7349  df-plqqs 7350  df-mqqs 7351  df-ltnqqs 7354  df-enq0 7425  df-nq0 7426  df-plq0 7428  df-mq0 7429  df-inp 7467
This theorem is referenced by:  prarloclem  7502
  Copyright terms: Public domain W3C validator