ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqord1 GIF version

Theorem eqord1 8377
Description: A strictly increasing real function on a subset of is one-to-one. (Contributed by Mario Carneiro, 14-Jun-2014.) (Revised by Jim Kingdon, 20-Dec-2022.)
Hypotheses
Ref Expression
ltord.1 (𝑥 = 𝑦𝐴 = 𝐵)
ltord.2 (𝑥 = 𝐶𝐴 = 𝑀)
ltord.3 (𝑥 = 𝐷𝐴 = 𝑁)
ltord.4 𝑆 ⊆ ℝ
ltord.5 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
ltord.6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 < 𝑦𝐴 < 𝐵))
Assertion
Ref Expression
eqord1 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝐶 = 𝐷𝑀 = 𝑁))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑦,𝐶   𝑥,𝐷,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑦)

Proof of Theorem eqord1
StepHypRef Expression
1 simprl 521 . . . . . 6 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → 𝐶𝑆)
2 elisset 2739 . . . . . 6 (𝐶𝑆 → ∃𝑥 𝑥 = 𝐶)
31, 2syl 14 . . . . 5 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → ∃𝑥 𝑥 = 𝐶)
43adantr 274 . . . 4 (((𝜑 ∧ (𝐶𝑆𝐷𝑆)) ∧ 𝐶 = 𝐷) → ∃𝑥 𝑥 = 𝐶)
5 ltord.2 . . . . . 6 (𝑥 = 𝐶𝐴 = 𝑀)
65adantl 275 . . . . 5 ((((𝜑 ∧ (𝐶𝑆𝐷𝑆)) ∧ 𝐶 = 𝐷) ∧ 𝑥 = 𝐶) → 𝐴 = 𝑀)
7 eqeq2 2175 . . . . . . . 8 (𝐶 = 𝐷 → (𝑥 = 𝐶𝑥 = 𝐷))
87adantl 275 . . . . . . 7 (((𝜑 ∧ (𝐶𝑆𝐷𝑆)) ∧ 𝐶 = 𝐷) → (𝑥 = 𝐶𝑥 = 𝐷))
98biimpa 294 . . . . . 6 ((((𝜑 ∧ (𝐶𝑆𝐷𝑆)) ∧ 𝐶 = 𝐷) ∧ 𝑥 = 𝐶) → 𝑥 = 𝐷)
10 ltord.3 . . . . . 6 (𝑥 = 𝐷𝐴 = 𝑁)
119, 10syl 14 . . . . 5 ((((𝜑 ∧ (𝐶𝑆𝐷𝑆)) ∧ 𝐶 = 𝐷) ∧ 𝑥 = 𝐶) → 𝐴 = 𝑁)
126, 11eqtr3d 2200 . . . 4 ((((𝜑 ∧ (𝐶𝑆𝐷𝑆)) ∧ 𝐶 = 𝐷) ∧ 𝑥 = 𝐶) → 𝑀 = 𝑁)
134, 12exlimddv 1886 . . 3 (((𝜑 ∧ (𝐶𝑆𝐷𝑆)) ∧ 𝐶 = 𝐷) → 𝑀 = 𝑁)
1413ex 114 . 2 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝐶 = 𝐷𝑀 = 𝑁))
15 ltord.1 . . . . . 6 (𝑥 = 𝑦𝐴 = 𝐵)
16 ltord.4 . . . . . 6 𝑆 ⊆ ℝ
17 ltord.5 . . . . . 6 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
18 ltord.6 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 < 𝑦𝐴 < 𝐵))
1915, 5, 10, 16, 17, 18ltordlem 8376 . . . . 5 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝐶 < 𝐷𝑀 < 𝑁))
2019con3d 621 . . . 4 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (¬ 𝑀 < 𝑁 → ¬ 𝐶 < 𝐷))
2115, 10, 5, 16, 17, 18ltordlem 8376 . . . . . 6 ((𝜑 ∧ (𝐷𝑆𝐶𝑆)) → (𝐷 < 𝐶𝑁 < 𝑀))
2221con3d 621 . . . . 5 ((𝜑 ∧ (𝐷𝑆𝐶𝑆)) → (¬ 𝑁 < 𝑀 → ¬ 𝐷 < 𝐶))
2322ancom2s 556 . . . 4 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (¬ 𝑁 < 𝑀 → ¬ 𝐷 < 𝐶))
2420, 23anim12d 333 . . 3 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → ((¬ 𝑀 < 𝑁 ∧ ¬ 𝑁 < 𝑀) → (¬ 𝐶 < 𝐷 ∧ ¬ 𝐷 < 𝐶)))
2517ralrimiva 2538 . . . . . 6 (𝜑 → ∀𝑥𝑆 𝐴 ∈ ℝ)
265eleq1d 2234 . . . . . . 7 (𝑥 = 𝐶 → (𝐴 ∈ ℝ ↔ 𝑀 ∈ ℝ))
2726rspccva 2828 . . . . . 6 ((∀𝑥𝑆 𝐴 ∈ ℝ ∧ 𝐶𝑆) → 𝑀 ∈ ℝ)
2825, 27sylan 281 . . . . 5 ((𝜑𝐶𝑆) → 𝑀 ∈ ℝ)
2928adantrr 471 . . . 4 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → 𝑀 ∈ ℝ)
3010eleq1d 2234 . . . . . . 7 (𝑥 = 𝐷 → (𝐴 ∈ ℝ ↔ 𝑁 ∈ ℝ))
3130rspccva 2828 . . . . . 6 ((∀𝑥𝑆 𝐴 ∈ ℝ ∧ 𝐷𝑆) → 𝑁 ∈ ℝ)
3225, 31sylan 281 . . . . 5 ((𝜑𝐷𝑆) → 𝑁 ∈ ℝ)
3332adantrl 470 . . . 4 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → 𝑁 ∈ ℝ)
3429, 33lttri3d 8009 . . 3 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝑀 = 𝑁 ↔ (¬ 𝑀 < 𝑁 ∧ ¬ 𝑁 < 𝑀)))
3516, 1sselid 3139 . . . 4 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → 𝐶 ∈ ℝ)
36 simprr 522 . . . . 5 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → 𝐷𝑆)
3716, 36sselid 3139 . . . 4 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → 𝐷 ∈ ℝ)
3835, 37lttri3d 8009 . . 3 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝐶 = 𝐷 ↔ (¬ 𝐶 < 𝐷 ∧ ¬ 𝐷 < 𝐶)))
3924, 34, 383imtr4d 202 . 2 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝑀 = 𝑁𝐶 = 𝐷))
4014, 39impbid 128 1 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝐶 = 𝐷𝑀 = 𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104   = wceq 1343  wex 1480  wcel 2136  wral 2443  wss 3115   class class class wbr 3981  cr 7748   < clt 7929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4099  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-setind 4513  ax-cnex 7840  ax-resscn 7841  ax-pre-ltirr 7861  ax-pre-apti 7864
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-nel 2431  df-ral 2448  df-rex 2449  df-rab 2452  df-v 2727  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-br 3982  df-opab 4043  df-xp 4609  df-pnf 7931  df-mnf 7932  df-ltxr 7934
This theorem is referenced by:  eqord2  8378  reef11  11636  nninfdclemf1  12381
  Copyright terms: Public domain W3C validator