Proof of Theorem eqord1
Step | Hyp | Ref
| Expression |
1 | | simprl 526 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → 𝐶 ∈ 𝑆) |
2 | | elisset 2744 |
. . . . . 6
⊢ (𝐶 ∈ 𝑆 → ∃𝑥 𝑥 = 𝐶) |
3 | 1, 2 | syl 14 |
. . . . 5
⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → ∃𝑥 𝑥 = 𝐶) |
4 | 3 | adantr 274 |
. . . 4
⊢ (((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) ∧ 𝐶 = 𝐷) → ∃𝑥 𝑥 = 𝐶) |
5 | | ltord.2 |
. . . . . 6
⊢ (𝑥 = 𝐶 → 𝐴 = 𝑀) |
6 | 5 | adantl 275 |
. . . . 5
⊢ ((((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) ∧ 𝐶 = 𝐷) ∧ 𝑥 = 𝐶) → 𝐴 = 𝑀) |
7 | | eqeq2 2180 |
. . . . . . . 8
⊢ (𝐶 = 𝐷 → (𝑥 = 𝐶 ↔ 𝑥 = 𝐷)) |
8 | 7 | adantl 275 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) ∧ 𝐶 = 𝐷) → (𝑥 = 𝐶 ↔ 𝑥 = 𝐷)) |
9 | 8 | biimpa 294 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) ∧ 𝐶 = 𝐷) ∧ 𝑥 = 𝐶) → 𝑥 = 𝐷) |
10 | | ltord.3 |
. . . . . 6
⊢ (𝑥 = 𝐷 → 𝐴 = 𝑁) |
11 | 9, 10 | syl 14 |
. . . . 5
⊢ ((((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) ∧ 𝐶 = 𝐷) ∧ 𝑥 = 𝐶) → 𝐴 = 𝑁) |
12 | 6, 11 | eqtr3d 2205 |
. . . 4
⊢ ((((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) ∧ 𝐶 = 𝐷) ∧ 𝑥 = 𝐶) → 𝑀 = 𝑁) |
13 | 4, 12 | exlimddv 1891 |
. . 3
⊢ (((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) ∧ 𝐶 = 𝐷) → 𝑀 = 𝑁) |
14 | 13 | ex 114 |
. 2
⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (𝐶 = 𝐷 → 𝑀 = 𝑁)) |
15 | | ltord.1 |
. . . . . 6
⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) |
16 | | ltord.4 |
. . . . . 6
⊢ 𝑆 ⊆
ℝ |
17 | | ltord.5 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) |
18 | | ltord.6 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 < 𝑦 → 𝐴 < 𝐵)) |
19 | 15, 5, 10, 16, 17, 18 | ltordlem 8401 |
. . . . 5
⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (𝐶 < 𝐷 → 𝑀 < 𝑁)) |
20 | 19 | con3d 626 |
. . . 4
⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (¬ 𝑀 < 𝑁 → ¬ 𝐶 < 𝐷)) |
21 | 15, 10, 5, 16, 17, 18 | ltordlem 8401 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐷 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) → (𝐷 < 𝐶 → 𝑁 < 𝑀)) |
22 | 21 | con3d 626 |
. . . . 5
⊢ ((𝜑 ∧ (𝐷 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) → (¬ 𝑁 < 𝑀 → ¬ 𝐷 < 𝐶)) |
23 | 22 | ancom2s 561 |
. . . 4
⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (¬ 𝑁 < 𝑀 → ¬ 𝐷 < 𝐶)) |
24 | 20, 23 | anim12d 333 |
. . 3
⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → ((¬ 𝑀 < 𝑁 ∧ ¬ 𝑁 < 𝑀) → (¬ 𝐶 < 𝐷 ∧ ¬ 𝐷 < 𝐶))) |
25 | 17 | ralrimiva 2543 |
. . . . . 6
⊢ (𝜑 → ∀𝑥 ∈ 𝑆 𝐴 ∈ ℝ) |
26 | 5 | eleq1d 2239 |
. . . . . . 7
⊢ (𝑥 = 𝐶 → (𝐴 ∈ ℝ ↔ 𝑀 ∈ ℝ)) |
27 | 26 | rspccva 2833 |
. . . . . 6
⊢
((∀𝑥 ∈
𝑆 𝐴 ∈ ℝ ∧ 𝐶 ∈ 𝑆) → 𝑀 ∈ ℝ) |
28 | 25, 27 | sylan 281 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 ∈ 𝑆) → 𝑀 ∈ ℝ) |
29 | 28 | adantrr 476 |
. . . 4
⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → 𝑀 ∈ ℝ) |
30 | 10 | eleq1d 2239 |
. . . . . . 7
⊢ (𝑥 = 𝐷 → (𝐴 ∈ ℝ ↔ 𝑁 ∈ ℝ)) |
31 | 30 | rspccva 2833 |
. . . . . 6
⊢
((∀𝑥 ∈
𝑆 𝐴 ∈ ℝ ∧ 𝐷 ∈ 𝑆) → 𝑁 ∈ ℝ) |
32 | 25, 31 | sylan 281 |
. . . . 5
⊢ ((𝜑 ∧ 𝐷 ∈ 𝑆) → 𝑁 ∈ ℝ) |
33 | 32 | adantrl 475 |
. . . 4
⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → 𝑁 ∈ ℝ) |
34 | 29, 33 | lttri3d 8034 |
. . 3
⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (𝑀 = 𝑁 ↔ (¬ 𝑀 < 𝑁 ∧ ¬ 𝑁 < 𝑀))) |
35 | 16, 1 | sselid 3145 |
. . . 4
⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → 𝐶 ∈ ℝ) |
36 | | simprr 527 |
. . . . 5
⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → 𝐷 ∈ 𝑆) |
37 | 16, 36 | sselid 3145 |
. . . 4
⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → 𝐷 ∈ ℝ) |
38 | 35, 37 | lttri3d 8034 |
. . 3
⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (𝐶 = 𝐷 ↔ (¬ 𝐶 < 𝐷 ∧ ¬ 𝐷 < 𝐶))) |
39 | 24, 34, 38 | 3imtr4d 202 |
. 2
⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (𝑀 = 𝑁 → 𝐶 = 𝐷)) |
40 | 14, 39 | impbid 128 |
1
⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (𝐶 = 𝐷 ↔ 𝑀 = 𝑁)) |