Proof of Theorem eqord1
| Step | Hyp | Ref
| Expression |
| 1 | | simprl 529 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → 𝐶 ∈ 𝑆) |
| 2 | | elisset 2777 |
. . . . . 6
⊢ (𝐶 ∈ 𝑆 → ∃𝑥 𝑥 = 𝐶) |
| 3 | 1, 2 | syl 14 |
. . . . 5
⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → ∃𝑥 𝑥 = 𝐶) |
| 4 | 3 | adantr 276 |
. . . 4
⊢ (((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) ∧ 𝐶 = 𝐷) → ∃𝑥 𝑥 = 𝐶) |
| 5 | | ltord.2 |
. . . . . 6
⊢ (𝑥 = 𝐶 → 𝐴 = 𝑀) |
| 6 | 5 | adantl 277 |
. . . . 5
⊢ ((((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) ∧ 𝐶 = 𝐷) ∧ 𝑥 = 𝐶) → 𝐴 = 𝑀) |
| 7 | | eqeq2 2206 |
. . . . . . . 8
⊢ (𝐶 = 𝐷 → (𝑥 = 𝐶 ↔ 𝑥 = 𝐷)) |
| 8 | 7 | adantl 277 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) ∧ 𝐶 = 𝐷) → (𝑥 = 𝐶 ↔ 𝑥 = 𝐷)) |
| 9 | 8 | biimpa 296 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) ∧ 𝐶 = 𝐷) ∧ 𝑥 = 𝐶) → 𝑥 = 𝐷) |
| 10 | | ltord.3 |
. . . . . 6
⊢ (𝑥 = 𝐷 → 𝐴 = 𝑁) |
| 11 | 9, 10 | syl 14 |
. . . . 5
⊢ ((((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) ∧ 𝐶 = 𝐷) ∧ 𝑥 = 𝐶) → 𝐴 = 𝑁) |
| 12 | 6, 11 | eqtr3d 2231 |
. . . 4
⊢ ((((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) ∧ 𝐶 = 𝐷) ∧ 𝑥 = 𝐶) → 𝑀 = 𝑁) |
| 13 | 4, 12 | exlimddv 1913 |
. . 3
⊢ (((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) ∧ 𝐶 = 𝐷) → 𝑀 = 𝑁) |
| 14 | 13 | ex 115 |
. 2
⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (𝐶 = 𝐷 → 𝑀 = 𝑁)) |
| 15 | | ltord.1 |
. . . . . 6
⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) |
| 16 | | ltord.4 |
. . . . . 6
⊢ 𝑆 ⊆
ℝ |
| 17 | | ltord.5 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) |
| 18 | | ltord.6 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 < 𝑦 → 𝐴 < 𝐵)) |
| 19 | 15, 5, 10, 16, 17, 18 | ltordlem 8509 |
. . . . 5
⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (𝐶 < 𝐷 → 𝑀 < 𝑁)) |
| 20 | 19 | con3d 632 |
. . . 4
⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (¬ 𝑀 < 𝑁 → ¬ 𝐶 < 𝐷)) |
| 21 | 15, 10, 5, 16, 17, 18 | ltordlem 8509 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐷 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) → (𝐷 < 𝐶 → 𝑁 < 𝑀)) |
| 22 | 21 | con3d 632 |
. . . . 5
⊢ ((𝜑 ∧ (𝐷 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) → (¬ 𝑁 < 𝑀 → ¬ 𝐷 < 𝐶)) |
| 23 | 22 | ancom2s 566 |
. . . 4
⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (¬ 𝑁 < 𝑀 → ¬ 𝐷 < 𝐶)) |
| 24 | 20, 23 | anim12d 335 |
. . 3
⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → ((¬ 𝑀 < 𝑁 ∧ ¬ 𝑁 < 𝑀) → (¬ 𝐶 < 𝐷 ∧ ¬ 𝐷 < 𝐶))) |
| 25 | 17 | ralrimiva 2570 |
. . . . . 6
⊢ (𝜑 → ∀𝑥 ∈ 𝑆 𝐴 ∈ ℝ) |
| 26 | 5 | eleq1d 2265 |
. . . . . . 7
⊢ (𝑥 = 𝐶 → (𝐴 ∈ ℝ ↔ 𝑀 ∈ ℝ)) |
| 27 | 26 | rspccva 2867 |
. . . . . 6
⊢
((∀𝑥 ∈
𝑆 𝐴 ∈ ℝ ∧ 𝐶 ∈ 𝑆) → 𝑀 ∈ ℝ) |
| 28 | 25, 27 | sylan 283 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 ∈ 𝑆) → 𝑀 ∈ ℝ) |
| 29 | 28 | adantrr 479 |
. . . 4
⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → 𝑀 ∈ ℝ) |
| 30 | 10 | eleq1d 2265 |
. . . . . . 7
⊢ (𝑥 = 𝐷 → (𝐴 ∈ ℝ ↔ 𝑁 ∈ ℝ)) |
| 31 | 30 | rspccva 2867 |
. . . . . 6
⊢
((∀𝑥 ∈
𝑆 𝐴 ∈ ℝ ∧ 𝐷 ∈ 𝑆) → 𝑁 ∈ ℝ) |
| 32 | 25, 31 | sylan 283 |
. . . . 5
⊢ ((𝜑 ∧ 𝐷 ∈ 𝑆) → 𝑁 ∈ ℝ) |
| 33 | 32 | adantrl 478 |
. . . 4
⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → 𝑁 ∈ ℝ) |
| 34 | 29, 33 | lttri3d 8141 |
. . 3
⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (𝑀 = 𝑁 ↔ (¬ 𝑀 < 𝑁 ∧ ¬ 𝑁 < 𝑀))) |
| 35 | 16, 1 | sselid 3181 |
. . . 4
⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → 𝐶 ∈ ℝ) |
| 36 | | simprr 531 |
. . . . 5
⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → 𝐷 ∈ 𝑆) |
| 37 | 16, 36 | sselid 3181 |
. . . 4
⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → 𝐷 ∈ ℝ) |
| 38 | 35, 37 | lttri3d 8141 |
. . 3
⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (𝐶 = 𝐷 ↔ (¬ 𝐶 < 𝐷 ∧ ¬ 𝐷 < 𝐶))) |
| 39 | 24, 34, 38 | 3imtr4d 203 |
. 2
⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (𝑀 = 𝑁 → 𝐶 = 𝐷)) |
| 40 | 14, 39 | impbid 129 |
1
⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (𝐶 = 𝐷 ↔ 𝑀 = 𝑁)) |