Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1imaeq | GIF version |
Description: Taking images under a one-to-one function preserves equality. (Contributed by Stefan O'Rear, 30-Oct-2014.) |
Ref | Expression |
---|---|
f1imaeq | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) → ((𝐹 “ 𝐶) = (𝐹 “ 𝐷) ↔ 𝐶 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1imass 5742 | . . 3 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) → ((𝐹 “ 𝐶) ⊆ (𝐹 “ 𝐷) ↔ 𝐶 ⊆ 𝐷)) | |
2 | f1imass 5742 | . . . 4 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐷 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐴)) → ((𝐹 “ 𝐷) ⊆ (𝐹 “ 𝐶) ↔ 𝐷 ⊆ 𝐶)) | |
3 | 2 | ancom2s 556 | . . 3 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) → ((𝐹 “ 𝐷) ⊆ (𝐹 “ 𝐶) ↔ 𝐷 ⊆ 𝐶)) |
4 | 1, 3 | anbi12d 465 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) → (((𝐹 “ 𝐶) ⊆ (𝐹 “ 𝐷) ∧ (𝐹 “ 𝐷) ⊆ (𝐹 “ 𝐶)) ↔ (𝐶 ⊆ 𝐷 ∧ 𝐷 ⊆ 𝐶))) |
5 | eqss 3157 | . 2 ⊢ ((𝐹 “ 𝐶) = (𝐹 “ 𝐷) ↔ ((𝐹 “ 𝐶) ⊆ (𝐹 “ 𝐷) ∧ (𝐹 “ 𝐷) ⊆ (𝐹 “ 𝐶))) | |
6 | eqss 3157 | . 2 ⊢ (𝐶 = 𝐷 ↔ (𝐶 ⊆ 𝐷 ∧ 𝐷 ⊆ 𝐶)) | |
7 | 4, 5, 6 | 3bitr4g 222 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) → ((𝐹 “ 𝐶) = (𝐹 “ 𝐷) ↔ 𝐶 = 𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ⊆ wss 3116 “ cima 4607 –1-1→wf1 5185 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fv 5196 |
This theorem is referenced by: hmeoimaf1o 12954 |
Copyright terms: Public domain | W3C validator |