![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > f1imaeq | GIF version |
Description: Taking images under a one-to-one function preserves equality. (Contributed by Stefan O'Rear, 30-Oct-2014.) |
Ref | Expression |
---|---|
f1imaeq | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) → ((𝐹 “ 𝐶) = (𝐹 “ 𝐷) ↔ 𝐶 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1imass 5796 | . . 3 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) → ((𝐹 “ 𝐶) ⊆ (𝐹 “ 𝐷) ↔ 𝐶 ⊆ 𝐷)) | |
2 | f1imass 5796 | . . . 4 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐷 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐴)) → ((𝐹 “ 𝐷) ⊆ (𝐹 “ 𝐶) ↔ 𝐷 ⊆ 𝐶)) | |
3 | 2 | ancom2s 566 | . . 3 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) → ((𝐹 “ 𝐷) ⊆ (𝐹 “ 𝐶) ↔ 𝐷 ⊆ 𝐶)) |
4 | 1, 3 | anbi12d 473 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) → (((𝐹 “ 𝐶) ⊆ (𝐹 “ 𝐷) ∧ (𝐹 “ 𝐷) ⊆ (𝐹 “ 𝐶)) ↔ (𝐶 ⊆ 𝐷 ∧ 𝐷 ⊆ 𝐶))) |
5 | eqss 3185 | . 2 ⊢ ((𝐹 “ 𝐶) = (𝐹 “ 𝐷) ↔ ((𝐹 “ 𝐶) ⊆ (𝐹 “ 𝐷) ∧ (𝐹 “ 𝐷) ⊆ (𝐹 “ 𝐶))) | |
6 | eqss 3185 | . 2 ⊢ (𝐶 = 𝐷 ↔ (𝐶 ⊆ 𝐷 ∧ 𝐷 ⊆ 𝐶)) | |
7 | 4, 5, 6 | 3bitr4g 223 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) → ((𝐹 “ 𝐶) = (𝐹 “ 𝐷) ↔ 𝐶 = 𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ⊆ wss 3144 “ cima 4647 –1-1→wf1 5232 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-v 2754 df-sbc 2978 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-opab 4080 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fv 5243 |
This theorem is referenced by: hmeoimaf1o 14291 |
Copyright terms: Public domain | W3C validator |