| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ancomd | GIF version | ||
| Description: Commutation of conjuncts in consequent. (Contributed by Jeff Hankins, 14-Aug-2009.) |
| Ref | Expression |
|---|---|
| ancomd.1 | ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| ancomd | ⊢ (𝜑 → (𝜒 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancomd.1 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) | |
| 2 | ancom 266 | . 2 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) | |
| 3 | 1, 2 | sylib 122 | 1 ⊢ (𝜑 → (𝜒 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: elres 5041 relbrcnvg 5107 fvelrnb 5683 relelec 6730 prcdnql 7679 1idpru 7786 gt0srpr 7943 fihashf1rn 11018 pfxccatin12 11273 prodmodclem3 12094 sinbnd 12271 cosbnd 12272 dvdsdivcl 12369 nn0ehalf 12422 nn0oddm1d2 12428 nnoddm1d2 12429 coprmgcdb 12618 divgcdcoprm0 12631 divgcdcoprmex 12632 cncongr1 12633 quscrng 14505 sincosq2sgn 15509 sincosq4sgn 15511 |
| Copyright terms: Public domain | W3C validator |