Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ancomd | GIF version |
Description: Commutation of conjuncts in consequent. (Contributed by Jeff Hankins, 14-Aug-2009.) |
Ref | Expression |
---|---|
ancomd.1 | ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
ancomd | ⊢ (𝜑 → (𝜒 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancomd.1 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) | |
2 | ancom 264 | . 2 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) | |
3 | 1, 2 | sylib 121 | 1 ⊢ (𝜑 → (𝜒 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: elres 4920 relbrcnvg 4983 fvelrnb 5534 relelec 6541 prcdnql 7425 1idpru 7532 gt0srpr 7689 focdmex 10700 fihashf1rn 10702 prodmodclem3 11516 sinbnd 11693 cosbnd 11694 dvdsdivcl 11788 nn0ehalf 11840 nn0oddm1d2 11846 nnoddm1d2 11847 coprmgcdb 12020 divgcdcoprm0 12033 divgcdcoprmex 12034 cncongr1 12035 sincosq2sgn 13398 sincosq4sgn 13400 |
Copyright terms: Public domain | W3C validator |