| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ancomd | GIF version | ||
| Description: Commutation of conjuncts in consequent. (Contributed by Jeff Hankins, 14-Aug-2009.) |
| Ref | Expression |
|---|---|
| ancomd.1 | ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| ancomd | ⊢ (𝜑 → (𝜒 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancomd.1 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) | |
| 2 | ancom 266 | . 2 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) | |
| 3 | 1, 2 | sylib 122 | 1 ⊢ (𝜑 → (𝜒 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: elres 4983 relbrcnvg 5049 fvelrnb 5611 relelec 6643 prcdnql 7570 1idpru 7677 gt0srpr 7834 fihashf1rn 10899 prodmodclem3 11759 sinbnd 11936 cosbnd 11937 dvdsdivcl 12034 nn0ehalf 12087 nn0oddm1d2 12093 nnoddm1d2 12094 coprmgcdb 12283 divgcdcoprm0 12296 divgcdcoprmex 12297 cncongr1 12298 quscrng 14167 sincosq2sgn 15149 sincosq4sgn 15151 |
| Copyright terms: Public domain | W3C validator |