ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ancomd GIF version

Theorem ancomd 265
Description: Commutation of conjuncts in consequent. (Contributed by Jeff Hankins, 14-Aug-2009.)
Hypothesis
Ref Expression
ancomd.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
ancomd (𝜑 → (𝜒𝜓))

Proof of Theorem ancomd
StepHypRef Expression
1 ancomd.1 . 2 (𝜑 → (𝜓𝜒))
2 ancom 264 . 2 ((𝜓𝜒) ↔ (𝜒𝜓))
31, 2sylib 121 1 (𝜑 → (𝜒𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  elres  4927  relbrcnvg  4990  fvelrnb  5544  relelec  6553  prcdnql  7446  1idpru  7553  gt0srpr  7710  focdmex  10721  fihashf1rn  10723  prodmodclem3  11538  sinbnd  11715  cosbnd  11716  dvdsdivcl  11810  nn0ehalf  11862  nn0oddm1d2  11868  nnoddm1d2  11869  coprmgcdb  12042  divgcdcoprm0  12055  divgcdcoprmex  12056  cncongr1  12057  sincosq2sgn  13542  sincosq4sgn  13544
  Copyright terms: Public domain W3C validator