| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ancomd | GIF version | ||
| Description: Commutation of conjuncts in consequent. (Contributed by Jeff Hankins, 14-Aug-2009.) |
| Ref | Expression |
|---|---|
| ancomd.1 | ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| ancomd | ⊢ (𝜑 → (𝜒 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancomd.1 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) | |
| 2 | ancom 266 | . 2 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) | |
| 3 | 1, 2 | sylib 122 | 1 ⊢ (𝜑 → (𝜒 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: elres 5017 relbrcnvg 5083 fvelrnb 5654 relelec 6692 prcdnql 7639 1idpru 7746 gt0srpr 7903 fihashf1rn 10977 pfxccatin12 11231 prodmodclem3 12052 sinbnd 12229 cosbnd 12230 dvdsdivcl 12327 nn0ehalf 12380 nn0oddm1d2 12386 nnoddm1d2 12387 coprmgcdb 12576 divgcdcoprm0 12589 divgcdcoprmex 12590 cncongr1 12591 quscrng 14462 sincosq2sgn 15466 sincosq4sgn 15468 |
| Copyright terms: Public domain | W3C validator |