ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ancomd GIF version

Theorem ancomd 265
Description: Commutation of conjuncts in consequent. (Contributed by Jeff Hankins, 14-Aug-2009.)
Hypothesis
Ref Expression
ancomd.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
ancomd (𝜑 → (𝜒𝜓))

Proof of Theorem ancomd
StepHypRef Expression
1 ancomd.1 . 2 (𝜑 → (𝜓𝜒))
2 ancom 264 . 2 ((𝜓𝜒) ↔ (𝜒𝜓))
31, 2sylib 121 1 (𝜑 → (𝜒𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  elres  4920  relbrcnvg  4983  fvelrnb  5534  relelec  6541  prcdnql  7425  1idpru  7532  gt0srpr  7689  focdmex  10700  fihashf1rn  10702  prodmodclem3  11516  sinbnd  11693  cosbnd  11694  dvdsdivcl  11788  nn0ehalf  11840  nn0oddm1d2  11846  nnoddm1d2  11847  coprmgcdb  12020  divgcdcoprm0  12033  divgcdcoprmex  12034  cncongr1  12035  sincosq2sgn  13398  sincosq4sgn  13400
  Copyright terms: Public domain W3C validator