Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ancomd | GIF version |
Description: Commutation of conjuncts in consequent. (Contributed by Jeff Hankins, 14-Aug-2009.) |
Ref | Expression |
---|---|
ancomd.1 | ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
ancomd | ⊢ (𝜑 → (𝜒 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancomd.1 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) | |
2 | ancom 266 | . 2 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) | |
3 | 1, 2 | sylib 122 | 1 ⊢ (𝜑 → (𝜒 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: elres 4936 relbrcnvg 5000 fvelrnb 5555 relelec 6565 prcdnql 7458 1idpru 7565 gt0srpr 7722 fihashf1rn 10736 prodmodclem3 11551 sinbnd 11728 cosbnd 11729 dvdsdivcl 11823 nn0ehalf 11875 nn0oddm1d2 11881 nnoddm1d2 11882 coprmgcdb 12055 divgcdcoprm0 12068 divgcdcoprmex 12069 cncongr1 12070 sincosq2sgn 13819 sincosq4sgn 13821 |
Copyright terms: Public domain | W3C validator |