ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ancomd GIF version

Theorem ancomd 267
Description: Commutation of conjuncts in consequent. (Contributed by Jeff Hankins, 14-Aug-2009.)
Hypothesis
Ref Expression
ancomd.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
ancomd (𝜑 → (𝜒𝜓))

Proof of Theorem ancomd
StepHypRef Expression
1 ancomd.1 . 2 (𝜑 → (𝜓𝜒))
2 ancom 266 . 2 ((𝜓𝜒) ↔ (𝜒𝜓))
31, 2sylib 122 1 (𝜑 → (𝜒𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  elres  4983  relbrcnvg  5049  fvelrnb  5611  relelec  6643  prcdnql  7568  1idpru  7675  gt0srpr  7832  fihashf1rn  10897  prodmodclem3  11757  sinbnd  11934  cosbnd  11935  dvdsdivcl  12032  nn0ehalf  12085  nn0oddm1d2  12091  nnoddm1d2  12092  coprmgcdb  12281  divgcdcoprm0  12294  divgcdcoprmex  12295  cncongr1  12296  quscrng  14165  sincosq2sgn  15147  sincosq4sgn  15149
  Copyright terms: Public domain W3C validator