| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ancomd | GIF version | ||
| Description: Commutation of conjuncts in consequent. (Contributed by Jeff Hankins, 14-Aug-2009.) |
| Ref | Expression |
|---|---|
| ancomd.1 | ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| ancomd | ⊢ (𝜑 → (𝜒 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancomd.1 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) | |
| 2 | ancom 266 | . 2 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) | |
| 3 | 1, 2 | sylib 122 | 1 ⊢ (𝜑 → (𝜒 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: elres 5000 relbrcnvg 5066 fvelrnb 5633 relelec 6669 prcdnql 7604 1idpru 7711 gt0srpr 7868 fihashf1rn 10940 prodmodclem3 11930 sinbnd 12107 cosbnd 12108 dvdsdivcl 12205 nn0ehalf 12258 nn0oddm1d2 12264 nnoddm1d2 12265 coprmgcdb 12454 divgcdcoprm0 12467 divgcdcoprmex 12468 cncongr1 12469 quscrng 14339 sincosq2sgn 15343 sincosq4sgn 15345 |
| Copyright terms: Public domain | W3C validator |