![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ancomd | GIF version |
Description: Commutation of conjuncts in consequent. (Contributed by Jeff Hankins, 14-Aug-2009.) |
Ref | Expression |
---|---|
ancomd.1 | ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
ancomd | ⊢ (𝜑 → (𝜒 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancomd.1 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) | |
2 | ancom 264 | . 2 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) | |
3 | 1, 2 | sylib 121 | 1 ⊢ (𝜑 → (𝜒 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: elres 4811 relbrcnvg 4874 fvelrnb 5421 relelec 6420 prcdnql 7233 1idpru 7340 gt0srpr 7484 focdmex 10419 fihashf1rn 10421 sinbnd 11303 cosbnd 11304 dvdsdivcl 11389 nn0ehalf 11441 nn0oddm1d2 11447 nnoddm1d2 11448 coprmgcdb 11608 divgcdcoprm0 11621 divgcdcoprmex 11622 cncongr1 11623 |
Copyright terms: Public domain | W3C validator |