ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ancomd GIF version

Theorem ancomd 267
Description: Commutation of conjuncts in consequent. (Contributed by Jeff Hankins, 14-Aug-2009.)
Hypothesis
Ref Expression
ancomd.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
ancomd (𝜑 → (𝜒𝜓))

Proof of Theorem ancomd
StepHypRef Expression
1 ancomd.1 . 2 (𝜑 → (𝜓𝜒))
2 ancom 266 . 2 ((𝜓𝜒) ↔ (𝜒𝜓))
31, 2sylib 122 1 (𝜑 → (𝜒𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  elres  5041  relbrcnvg  5107  fvelrnb  5683  relelec  6730  prcdnql  7679  1idpru  7786  gt0srpr  7943  fihashf1rn  11018  pfxccatin12  11273  prodmodclem3  12094  sinbnd  12271  cosbnd  12272  dvdsdivcl  12369  nn0ehalf  12422  nn0oddm1d2  12428  nnoddm1d2  12429  coprmgcdb  12618  divgcdcoprm0  12631  divgcdcoprmex  12632  cncongr1  12633  quscrng  14505  sincosq2sgn  15509  sincosq4sgn  15511
  Copyright terms: Public domain W3C validator