| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ancomd | GIF version | ||
| Description: Commutation of conjuncts in consequent. (Contributed by Jeff Hankins, 14-Aug-2009.) |
| Ref | Expression |
|---|---|
| ancomd.1 | ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| ancomd | ⊢ (𝜑 → (𝜒 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancomd.1 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) | |
| 2 | ancom 266 | . 2 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) | |
| 3 | 1, 2 | sylib 122 | 1 ⊢ (𝜑 → (𝜒 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: elres 4982 relbrcnvg 5048 fvelrnb 5608 relelec 6634 prcdnql 7551 1idpru 7658 gt0srpr 7815 fihashf1rn 10880 prodmodclem3 11740 sinbnd 11917 cosbnd 11918 dvdsdivcl 12015 nn0ehalf 12068 nn0oddm1d2 12074 nnoddm1d2 12075 coprmgcdb 12256 divgcdcoprm0 12269 divgcdcoprmex 12270 cncongr1 12271 quscrng 14089 sincosq2sgn 15063 sincosq4sgn 15065 |
| Copyright terms: Public domain | W3C validator |