| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ancomd | Unicode version | ||
| Description: Commutation of conjuncts in consequent. (Contributed by Jeff Hankins, 14-Aug-2009.) |
| Ref | Expression |
|---|---|
| ancomd.1 |
|
| Ref | Expression |
|---|---|
| ancomd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancomd.1 |
. 2
| |
| 2 | ancom 266 |
. 2
| |
| 3 | 1, 2 | sylib 122 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: elres 4994 relbrcnvg 5060 fvelrnb 5625 relelec 6661 prcdnql 7596 1idpru 7703 gt0srpr 7860 fihashf1rn 10931 prodmodclem3 11828 sinbnd 12005 cosbnd 12006 dvdsdivcl 12103 nn0ehalf 12156 nn0oddm1d2 12162 nnoddm1d2 12163 coprmgcdb 12352 divgcdcoprm0 12365 divgcdcoprmex 12366 cncongr1 12367 quscrng 14237 sincosq2sgn 15241 sincosq4sgn 15243 |
| Copyright terms: Public domain | W3C validator |