| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ancomd | Unicode version | ||
| Description: Commutation of conjuncts in consequent. (Contributed by Jeff Hankins, 14-Aug-2009.) |
| Ref | Expression |
|---|---|
| ancomd.1 |
|
| Ref | Expression |
|---|---|
| ancomd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancomd.1 |
. 2
| |
| 2 | ancom 266 |
. 2
| |
| 3 | 1, 2 | sylib 122 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: elres 4983 relbrcnvg 5049 fvelrnb 5611 relelec 6643 prcdnql 7568 1idpru 7675 gt0srpr 7832 fihashf1rn 10897 prodmodclem3 11757 sinbnd 11934 cosbnd 11935 dvdsdivcl 12032 nn0ehalf 12085 nn0oddm1d2 12091 nnoddm1d2 12092 coprmgcdb 12281 divgcdcoprm0 12294 divgcdcoprmex 12295 cncongr1 12296 quscrng 14165 sincosq2sgn 15147 sincosq4sgn 15149 |
| Copyright terms: Public domain | W3C validator |