![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ancomd | Unicode version |
Description: Commutation of conjuncts in consequent. (Contributed by Jeff Hankins, 14-Aug-2009.) |
Ref | Expression |
---|---|
ancomd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ancomd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancomd.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | ancom 266 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | sylib 122 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: elres 4979 relbrcnvg 5045 fvelrnb 5605 relelec 6631 prcdnql 7546 1idpru 7653 gt0srpr 7810 fihashf1rn 10862 prodmodclem3 11721 sinbnd 11898 cosbnd 11899 dvdsdivcl 11995 nn0ehalf 12047 nn0oddm1d2 12053 nnoddm1d2 12054 coprmgcdb 12229 divgcdcoprm0 12242 divgcdcoprmex 12243 cncongr1 12244 quscrng 14032 sincosq2sgn 15003 sincosq4sgn 15005 |
Copyright terms: Public domain | W3C validator |