| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ancomd | Unicode version | ||
| Description: Commutation of conjuncts in consequent. (Contributed by Jeff Hankins, 14-Aug-2009.) |
| Ref | Expression |
|---|---|
| ancomd.1 |
|
| Ref | Expression |
|---|---|
| ancomd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancomd.1 |
. 2
| |
| 2 | ancom 266 |
. 2
| |
| 3 | 1, 2 | sylib 122 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: elres 5040 relbrcnvg 5106 fvelrnb 5680 relelec 6720 prcdnql 7667 1idpru 7774 gt0srpr 7931 fihashf1rn 11005 pfxccatin12 11260 prodmodclem3 12081 sinbnd 12258 cosbnd 12259 dvdsdivcl 12356 nn0ehalf 12409 nn0oddm1d2 12415 nnoddm1d2 12416 coprmgcdb 12605 divgcdcoprm0 12618 divgcdcoprmex 12619 cncongr1 12620 quscrng 14491 sincosq2sgn 15495 sincosq4sgn 15497 |
| Copyright terms: Public domain | W3C validator |