ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ancomd Unicode version

Theorem ancomd 267
Description: Commutation of conjuncts in consequent. (Contributed by Jeff Hankins, 14-Aug-2009.)
Hypothesis
Ref Expression
ancomd.1  |-  ( ph  ->  ( ps  /\  ch ) )
Assertion
Ref Expression
ancomd  |-  ( ph  ->  ( ch  /\  ps ) )

Proof of Theorem ancomd
StepHypRef Expression
1 ancomd.1 . 2  |-  ( ph  ->  ( ps  /\  ch ) )
2 ancom 266 . 2  |-  ( ( ps  /\  ch )  <->  ( ch  /\  ps )
)
31, 2sylib 122 1  |-  ( ph  ->  ( ch  /\  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  elres  4992  relbrcnvg  5058  fvelrnb  5620  relelec  6652  prcdnql  7579  1idpru  7686  gt0srpr  7843  fihashf1rn  10914  prodmodclem3  11805  sinbnd  11982  cosbnd  11983  dvdsdivcl  12080  nn0ehalf  12133  nn0oddm1d2  12139  nnoddm1d2  12140  coprmgcdb  12329  divgcdcoprm0  12342  divgcdcoprmex  12343  cncongr1  12344  quscrng  14213  sincosq2sgn  15217  sincosq4sgn  15219
  Copyright terms: Public domain W3C validator