| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ancomd | Unicode version | ||
| Description: Commutation of conjuncts in consequent. (Contributed by Jeff Hankins, 14-Aug-2009.) |
| Ref | Expression |
|---|---|
| ancomd.1 |
|
| Ref | Expression |
|---|---|
| ancomd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancomd.1 |
. 2
| |
| 2 | ancom 266 |
. 2
| |
| 3 | 1, 2 | sylib 122 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: elres 4992 relbrcnvg 5058 fvelrnb 5620 relelec 6652 prcdnql 7579 1idpru 7686 gt0srpr 7843 fihashf1rn 10914 prodmodclem3 11805 sinbnd 11982 cosbnd 11983 dvdsdivcl 12080 nn0ehalf 12133 nn0oddm1d2 12139 nnoddm1d2 12140 coprmgcdb 12329 divgcdcoprm0 12342 divgcdcoprmex 12343 cncongr1 12344 quscrng 14213 sincosq2sgn 15217 sincosq4sgn 15219 |
| Copyright terms: Public domain | W3C validator |