| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ancomd | Unicode version | ||
| Description: Commutation of conjuncts in consequent. (Contributed by Jeff Hankins, 14-Aug-2009.) |
| Ref | Expression |
|---|---|
| ancomd.1 |
|
| Ref | Expression |
|---|---|
| ancomd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancomd.1 |
. 2
| |
| 2 | ancom 266 |
. 2
| |
| 3 | 1, 2 | sylib 122 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: elres 4994 relbrcnvg 5060 fvelrnb 5625 relelec 6661 prcdnql 7596 1idpru 7703 gt0srpr 7860 fihashf1rn 10931 prodmodclem3 11857 sinbnd 12034 cosbnd 12035 dvdsdivcl 12132 nn0ehalf 12185 nn0oddm1d2 12191 nnoddm1d2 12192 coprmgcdb 12381 divgcdcoprm0 12394 divgcdcoprmex 12395 cncongr1 12396 quscrng 14266 sincosq2sgn 15270 sincosq4sgn 15272 |
| Copyright terms: Public domain | W3C validator |