Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ancomd | Unicode version |
Description: Commutation of conjuncts in consequent. (Contributed by Jeff Hankins, 14-Aug-2009.) |
Ref | Expression |
---|---|
ancomd.1 |
Ref | Expression |
---|---|
ancomd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancomd.1 | . 2 | |
2 | ancom 264 | . 2 | |
3 | 1, 2 | sylib 121 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: elres 4925 relbrcnvg 4988 fvelrnb 5542 relelec 6550 prcdnql 7435 1idpru 7542 gt0srpr 7699 focdmex 10710 fihashf1rn 10712 prodmodclem3 11527 sinbnd 11704 cosbnd 11705 dvdsdivcl 11799 nn0ehalf 11851 nn0oddm1d2 11857 nnoddm1d2 11858 coprmgcdb 12031 divgcdcoprm0 12044 divgcdcoprmex 12045 cncongr1 12046 sincosq2sgn 13503 sincosq4sgn 13505 |
Copyright terms: Public domain | W3C validator |