ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ancomd Unicode version

Theorem ancomd 265
Description: Commutation of conjuncts in consequent. (Contributed by Jeff Hankins, 14-Aug-2009.)
Hypothesis
Ref Expression
ancomd.1  |-  ( ph  ->  ( ps  /\  ch ) )
Assertion
Ref Expression
ancomd  |-  ( ph  ->  ( ch  /\  ps ) )

Proof of Theorem ancomd
StepHypRef Expression
1 ancomd.1 . 2  |-  ( ph  ->  ( ps  /\  ch ) )
2 ancom 264 . 2  |-  ( ( ps  /\  ch )  <->  ( ch  /\  ps )
)
31, 2sylib 121 1  |-  ( ph  ->  ( ch  /\  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  elres  4925  relbrcnvg  4988  fvelrnb  5542  relelec  6550  prcdnql  7435  1idpru  7542  gt0srpr  7699  focdmex  10710  fihashf1rn  10712  prodmodclem3  11527  sinbnd  11704  cosbnd  11705  dvdsdivcl  11799  nn0ehalf  11851  nn0oddm1d2  11857  nnoddm1d2  11858  coprmgcdb  12031  divgcdcoprm0  12044  divgcdcoprmex  12045  cncongr1  12046  sincosq2sgn  13503  sincosq4sgn  13505
  Copyright terms: Public domain W3C validator