| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ancomd | Unicode version | ||
| Description: Commutation of conjuncts in consequent. (Contributed by Jeff Hankins, 14-Aug-2009.) |
| Ref | Expression |
|---|---|
| ancomd.1 |
|
| Ref | Expression |
|---|---|
| ancomd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancomd.1 |
. 2
| |
| 2 | ancom 266 |
. 2
| |
| 3 | 1, 2 | sylib 122 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: elres 5004 relbrcnvg 5070 fvelrnb 5639 relelec 6675 prcdnql 7617 1idpru 7724 gt0srpr 7881 fihashf1rn 10955 prodmodclem3 11961 sinbnd 12138 cosbnd 12139 dvdsdivcl 12236 nn0ehalf 12289 nn0oddm1d2 12295 nnoddm1d2 12296 coprmgcdb 12485 divgcdcoprm0 12498 divgcdcoprmex 12499 cncongr1 12500 quscrng 14370 sincosq2sgn 15374 sincosq4sgn 15376 |
| Copyright terms: Public domain | W3C validator |