ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cosbnd GIF version

Theorem cosbnd 11756
Description: The cosine of a real number lies between -1 and 1. Equation 18 of [Gleason] p. 311. (Contributed by NM, 16-Jan-2006.)
Assertion
Ref Expression
cosbnd (𝐴 ∈ ℝ → (-1 ≤ (cos‘𝐴) ∧ (cos‘𝐴) ≤ 1))

Proof of Theorem cosbnd
StepHypRef Expression
1 resincl 11723 . . . . . 6 (𝐴 ∈ ℝ → (sin‘𝐴) ∈ ℝ)
21sqge0d 10677 . . . . 5 (𝐴 ∈ ℝ → 0 ≤ ((sin‘𝐴)↑2))
3 recoscl 11724 . . . . . . 7 (𝐴 ∈ ℝ → (cos‘𝐴) ∈ ℝ)
43resqcld 10676 . . . . . 6 (𝐴 ∈ ℝ → ((cos‘𝐴)↑2) ∈ ℝ)
51resqcld 10676 . . . . . 6 (𝐴 ∈ ℝ → ((sin‘𝐴)↑2) ∈ ℝ)
64, 5addge02d 8489 . . . . 5 (𝐴 ∈ ℝ → (0 ≤ ((sin‘𝐴)↑2) ↔ ((cos‘𝐴)↑2) ≤ (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2))))
72, 6mpbid 147 . . . 4 (𝐴 ∈ ℝ → ((cos‘𝐴)↑2) ≤ (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)))
8 recn 7943 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
9 sincossq 11751 . . . . . 6 (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1)
108, 9syl 14 . . . . 5 (𝐴 ∈ ℝ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1)
11 sq1 10610 . . . . 5 (1↑2) = 1
1210, 11eqtr4di 2228 . . . 4 (𝐴 ∈ ℝ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = (1↑2))
137, 12breqtrd 4029 . . 3 (𝐴 ∈ ℝ → ((cos‘𝐴)↑2) ≤ (1↑2))
14 1re 7955 . . . . . 6 1 ∈ ℝ
15 0le1 8436 . . . . . 6 0 ≤ 1
16 lenegsq 11099 . . . . . 6 (((cos‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ ∧ 0 ≤ 1) → (((cos‘𝐴) ≤ 1 ∧ -(cos‘𝐴) ≤ 1) ↔ ((cos‘𝐴)↑2) ≤ (1↑2)))
1714, 15, 16mp3an23 1329 . . . . 5 ((cos‘𝐴) ∈ ℝ → (((cos‘𝐴) ≤ 1 ∧ -(cos‘𝐴) ≤ 1) ↔ ((cos‘𝐴)↑2) ≤ (1↑2)))
18 lenegcon1 8421 . . . . . . 7 (((cos‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → (-(cos‘𝐴) ≤ 1 ↔ -1 ≤ (cos‘𝐴)))
1914, 18mpan2 425 . . . . . 6 ((cos‘𝐴) ∈ ℝ → (-(cos‘𝐴) ≤ 1 ↔ -1 ≤ (cos‘𝐴)))
2019anbi2d 464 . . . . 5 ((cos‘𝐴) ∈ ℝ → (((cos‘𝐴) ≤ 1 ∧ -(cos‘𝐴) ≤ 1) ↔ ((cos‘𝐴) ≤ 1 ∧ -1 ≤ (cos‘𝐴))))
2117, 20bitr3d 190 . . . 4 ((cos‘𝐴) ∈ ℝ → (((cos‘𝐴)↑2) ≤ (1↑2) ↔ ((cos‘𝐴) ≤ 1 ∧ -1 ≤ (cos‘𝐴))))
223, 21syl 14 . . 3 (𝐴 ∈ ℝ → (((cos‘𝐴)↑2) ≤ (1↑2) ↔ ((cos‘𝐴) ≤ 1 ∧ -1 ≤ (cos‘𝐴))))
2313, 22mpbid 147 . 2 (𝐴 ∈ ℝ → ((cos‘𝐴) ≤ 1 ∧ -1 ≤ (cos‘𝐴)))
2423ancomd 267 1 (𝐴 ∈ ℝ → (-1 ≤ (cos‘𝐴) ∧ (cos‘𝐴) ≤ 1))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148   class class class wbr 4003  cfv 5216  (class class class)co 5874  cc 7808  cr 7809  0cc0 7810  1c1 7811   + caddc 7813  cle 7991  -cneg 8127  2c2 8968  cexp 10516  sincsin 11647  cosccos 11648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-mulrcl 7909  ax-addcom 7910  ax-mulcom 7911  ax-addass 7912  ax-mulass 7913  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-1rid 7917  ax-0id 7918  ax-rnegex 7919  ax-precex 7920  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-apti 7925  ax-pre-ltadd 7926  ax-pre-mulgt0 7927  ax-pre-mulext 7928  ax-arch 7929  ax-caucvg 7930
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-disj 3981  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-po 4296  df-iso 4297  df-iord 4366  df-on 4368  df-ilim 4369  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-isom 5225  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-recs 6305  df-irdg 6370  df-frec 6391  df-1o 6416  df-oadd 6420  df-er 6534  df-en 6740  df-dom 6741  df-fin 6742  df-sup 6982  df-pnf 7992  df-mnf 7993  df-xr 7994  df-ltxr 7995  df-le 7996  df-sub 8128  df-neg 8129  df-reap 8530  df-ap 8537  df-div 8628  df-inn 8918  df-2 8976  df-3 8977  df-4 8978  df-n0 9175  df-z 9252  df-uz 9527  df-q 9618  df-rp 9652  df-ico 9892  df-fz 10007  df-fzo 10140  df-seqfrec 10443  df-exp 10517  df-fac 10701  df-bc 10723  df-ihash 10751  df-cj 10846  df-re 10847  df-im 10848  df-rsqrt 11002  df-abs 11003  df-clim 11282  df-sumdc 11357  df-ef 11651  df-sin 11653  df-cos 11654
This theorem is referenced by:  cosbnd2  11758
  Copyright terms: Public domain W3C validator