ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvelrnb GIF version

Theorem fvelrnb 5608
Description: A member of a function's range is a value of the function. (Contributed by NM, 31-Oct-1995.)
Assertion
Ref Expression
fvelrnb (𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹 ↔ ∃𝑥𝐴 (𝐹𝑥) = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹

Proof of Theorem fvelrnb
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-rex 2481 . . . 4 (∃𝑥𝐴 (𝐹𝑥) = 𝐵 ↔ ∃𝑥(𝑥𝐴 ∧ (𝐹𝑥) = 𝐵))
2 19.41v 1917 . . . . 5 (∃𝑥((𝑥𝐴 ∧ (𝐹𝑥) = 𝐵) ∧ 𝐹 Fn 𝐴) ↔ (∃𝑥(𝑥𝐴 ∧ (𝐹𝑥) = 𝐵) ∧ 𝐹 Fn 𝐴))
3 simpl 109 . . . . . . . . . 10 ((𝑥𝐴 ∧ (𝐹𝑥) = 𝐵) → 𝑥𝐴)
43anim1i 340 . . . . . . . . 9 (((𝑥𝐴 ∧ (𝐹𝑥) = 𝐵) ∧ 𝐹 Fn 𝐴) → (𝑥𝐴𝐹 Fn 𝐴))
54ancomd 267 . . . . . . . 8 (((𝑥𝐴 ∧ (𝐹𝑥) = 𝐵) ∧ 𝐹 Fn 𝐴) → (𝐹 Fn 𝐴𝑥𝐴))
6 funfvex 5575 . . . . . . . . 9 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ V)
76funfni 5358 . . . . . . . 8 ((𝐹 Fn 𝐴𝑥𝐴) → (𝐹𝑥) ∈ V)
85, 7syl 14 . . . . . . 7 (((𝑥𝐴 ∧ (𝐹𝑥) = 𝐵) ∧ 𝐹 Fn 𝐴) → (𝐹𝑥) ∈ V)
9 simpr 110 . . . . . . . . 9 ((𝑥𝐴 ∧ (𝐹𝑥) = 𝐵) → (𝐹𝑥) = 𝐵)
109eleq1d 2265 . . . . . . . 8 ((𝑥𝐴 ∧ (𝐹𝑥) = 𝐵) → ((𝐹𝑥) ∈ V ↔ 𝐵 ∈ V))
1110adantr 276 . . . . . . 7 (((𝑥𝐴 ∧ (𝐹𝑥) = 𝐵) ∧ 𝐹 Fn 𝐴) → ((𝐹𝑥) ∈ V ↔ 𝐵 ∈ V))
128, 11mpbid 147 . . . . . 6 (((𝑥𝐴 ∧ (𝐹𝑥) = 𝐵) ∧ 𝐹 Fn 𝐴) → 𝐵 ∈ V)
1312exlimiv 1612 . . . . 5 (∃𝑥((𝑥𝐴 ∧ (𝐹𝑥) = 𝐵) ∧ 𝐹 Fn 𝐴) → 𝐵 ∈ V)
142, 13sylbir 135 . . . 4 ((∃𝑥(𝑥𝐴 ∧ (𝐹𝑥) = 𝐵) ∧ 𝐹 Fn 𝐴) → 𝐵 ∈ V)
151, 14sylanb 284 . . 3 ((∃𝑥𝐴 (𝐹𝑥) = 𝐵𝐹 Fn 𝐴) → 𝐵 ∈ V)
1615expcom 116 . 2 (𝐹 Fn 𝐴 → (∃𝑥𝐴 (𝐹𝑥) = 𝐵𝐵 ∈ V))
17 fnrnfv 5607 . . . 4 (𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)})
1817eleq2d 2266 . . 3 (𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹𝐵 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)}))
19 eqeq1 2203 . . . . . 6 (𝑦 = 𝐵 → (𝑦 = (𝐹𝑥) ↔ 𝐵 = (𝐹𝑥)))
20 eqcom 2198 . . . . . 6 (𝐵 = (𝐹𝑥) ↔ (𝐹𝑥) = 𝐵)
2119, 20bitrdi 196 . . . . 5 (𝑦 = 𝐵 → (𝑦 = (𝐹𝑥) ↔ (𝐹𝑥) = 𝐵))
2221rexbidv 2498 . . . 4 (𝑦 = 𝐵 → (∃𝑥𝐴 𝑦 = (𝐹𝑥) ↔ ∃𝑥𝐴 (𝐹𝑥) = 𝐵))
2322elab3g 2915 . . 3 ((∃𝑥𝐴 (𝐹𝑥) = 𝐵𝐵 ∈ V) → (𝐵 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)} ↔ ∃𝑥𝐴 (𝐹𝑥) = 𝐵))
2418, 23sylan9bbr 463 . 2 (((∃𝑥𝐴 (𝐹𝑥) = 𝐵𝐵 ∈ V) ∧ 𝐹 Fn 𝐴) → (𝐵 ∈ ran 𝐹 ↔ ∃𝑥𝐴 (𝐹𝑥) = 𝐵))
2516, 24mpancom 422 1 (𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹 ↔ ∃𝑥𝐴 (𝐹𝑥) = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wex 1506  wcel 2167  {cab 2182  wrex 2476  Vcvv 2763  ran crn 4664   Fn wfn 5253  cfv 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266
This theorem is referenced by:  foelcdmi  5613  chfnrn  5673  rexrn  5699  ralrn  5700  elrnrexdmb  5702  ffnfv  5720  fconstfvm  5780  elunirn  5813  isoini  5865  canth  5875  reldm  6244  ordiso2  7101  eldju  7134  ctssdc  7179  uzn0  9617  frec2uzrand  10497  frecuzrdgtcl  10504  frecuzrdgfunlem  10511  uzin2  11152  imasgrp2  13240  imasrng  13512  imasring  13620  reeff1o  15009
  Copyright terms: Public domain W3C validator