ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnoddm1d2 GIF version

Theorem nnoddm1d2 11337
Description: A positive integer is odd iff its successor divided by 2 is a positive integer. (Contributed by AV, 28-Jun-2021.)
Assertion
Ref Expression
nnoddm1d2 (𝑁 ∈ ℕ → (¬ 2 ∥ 𝑁 ↔ ((𝑁 + 1) / 2) ∈ ℕ))

Proof of Theorem nnoddm1d2
StepHypRef Expression
1 nnz 8867 . . 3 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
2 oddp1d2 11317 . . 3 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ((𝑁 + 1) / 2) ∈ ℤ))
31, 2syl 14 . 2 (𝑁 ∈ ℕ → (¬ 2 ∥ 𝑁 ↔ ((𝑁 + 1) / 2) ∈ ℤ))
4 peano2nn 8532 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
54nnred 8533 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℝ)
6 2re 8590 . . . . . . . . 9 2 ∈ ℝ
76a1i 9 . . . . . . . 8 (𝑁 ∈ ℕ → 2 ∈ ℝ)
8 nnre 8527 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
9 1red 7600 . . . . . . . . 9 (𝑁 ∈ ℕ → 1 ∈ ℝ)
10 nngt0 8545 . . . . . . . . 9 (𝑁 ∈ ℕ → 0 < 𝑁)
11 0lt1 7707 . . . . . . . . . 10 0 < 1
1211a1i 9 . . . . . . . . 9 (𝑁 ∈ ℕ → 0 < 1)
138, 9, 10, 12addgt0d 8095 . . . . . . . 8 (𝑁 ∈ ℕ → 0 < (𝑁 + 1))
14 2pos 8611 . . . . . . . . 9 0 < 2
1514a1i 9 . . . . . . . 8 (𝑁 ∈ ℕ → 0 < 2)
165, 7, 13, 15divgt0d 8493 . . . . . . 7 (𝑁 ∈ ℕ → 0 < ((𝑁 + 1) / 2))
1716anim1i 334 . . . . . 6 ((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (0 < ((𝑁 + 1) / 2) ∧ ((𝑁 + 1) / 2) ∈ ℤ))
1817ancomd 264 . . . . 5 ((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (((𝑁 + 1) / 2) ∈ ℤ ∧ 0 < ((𝑁 + 1) / 2)))
19 elnnz 8858 . . . . 5 (((𝑁 + 1) / 2) ∈ ℕ ↔ (((𝑁 + 1) / 2) ∈ ℤ ∧ 0 < ((𝑁 + 1) / 2)))
2018, 19sylibr 133 . . . 4 ((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁 + 1) / 2) ∈ ℕ)
2120ex 114 . . 3 (𝑁 ∈ ℕ → (((𝑁 + 1) / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℕ))
22 nnz 8867 . . 3 (((𝑁 + 1) / 2) ∈ ℕ → ((𝑁 + 1) / 2) ∈ ℤ)
2321, 22impbid1 141 . 2 (𝑁 ∈ ℕ → (((𝑁 + 1) / 2) ∈ ℤ ↔ ((𝑁 + 1) / 2) ∈ ℕ))
243, 23bitrd 187 1 (𝑁 ∈ ℕ → (¬ 2 ∥ 𝑁 ↔ ((𝑁 + 1) / 2) ∈ ℕ))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wcel 1445   class class class wbr 3867  (class class class)co 5690  cr 7446  0cc0 7447  1c1 7448   + caddc 7450   < clt 7619   / cdiv 8236  cn 8520  2c2 8571  cz 8848  cdvds 11223
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-cnex 7533  ax-resscn 7534  ax-1cn 7535  ax-1re 7536  ax-icn 7537  ax-addcl 7538  ax-addrcl 7539  ax-mulcl 7540  ax-mulrcl 7541  ax-addcom 7542  ax-mulcom 7543  ax-addass 7544  ax-mulass 7545  ax-distr 7546  ax-i2m1 7547  ax-0lt1 7548  ax-1rid 7549  ax-0id 7550  ax-rnegex 7551  ax-precex 7552  ax-cnre 7553  ax-pre-ltirr 7554  ax-pre-ltwlin 7555  ax-pre-lttrn 7556  ax-pre-apti 7557  ax-pre-ltadd 7558  ax-pre-mulgt0 7559  ax-pre-mulext 7560
This theorem depends on definitions:  df-bi 116  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-xor 1319  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-nel 2358  df-ral 2375  df-rex 2376  df-reu 2377  df-rmo 2378  df-rab 2379  df-v 2635  df-sbc 2855  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-br 3868  df-opab 3922  df-id 4144  df-po 4147  df-iso 4148  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-iota 5014  df-fun 5051  df-fv 5057  df-riota 5646  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-pnf 7621  df-mnf 7622  df-xr 7623  df-ltxr 7624  df-le 7625  df-sub 7752  df-neg 7753  df-reap 8149  df-ap 8156  df-div 8237  df-inn 8521  df-2 8579  df-n0 8772  df-z 8849  df-dvds 11224
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator