Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnoddm1d2 GIF version

Theorem nnoddm1d2 11613
 Description: A positive integer is odd iff its successor divided by 2 is a positive integer. (Contributed by AV, 28-Jun-2021.)
Assertion
Ref Expression
nnoddm1d2 (𝑁 ∈ ℕ → (¬ 2 ∥ 𝑁 ↔ ((𝑁 + 1) / 2) ∈ ℕ))

Proof of Theorem nnoddm1d2
StepHypRef Expression
1 nnz 9080 . . 3 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
2 oddp1d2 11593 . . 3 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ((𝑁 + 1) / 2) ∈ ℤ))
31, 2syl 14 . 2 (𝑁 ∈ ℕ → (¬ 2 ∥ 𝑁 ↔ ((𝑁 + 1) / 2) ∈ ℤ))
4 peano2nn 8739 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
54nnred 8740 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℝ)
6 2re 8797 . . . . . . . . 9 2 ∈ ℝ
76a1i 9 . . . . . . . 8 (𝑁 ∈ ℕ → 2 ∈ ℝ)
8 nnre 8734 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
9 1red 7788 . . . . . . . . 9 (𝑁 ∈ ℕ → 1 ∈ ℝ)
10 nngt0 8752 . . . . . . . . 9 (𝑁 ∈ ℕ → 0 < 𝑁)
11 0lt1 7896 . . . . . . . . . 10 0 < 1
1211a1i 9 . . . . . . . . 9 (𝑁 ∈ ℕ → 0 < 1)
138, 9, 10, 12addgt0d 8290 . . . . . . . 8 (𝑁 ∈ ℕ → 0 < (𝑁 + 1))
14 2pos 8818 . . . . . . . . 9 0 < 2
1514a1i 9 . . . . . . . 8 (𝑁 ∈ ℕ → 0 < 2)
165, 7, 13, 15divgt0d 8700 . . . . . . 7 (𝑁 ∈ ℕ → 0 < ((𝑁 + 1) / 2))
1716anim1i 338 . . . . . 6 ((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (0 < ((𝑁 + 1) / 2) ∧ ((𝑁 + 1) / 2) ∈ ℤ))
1817ancomd 265 . . . . 5 ((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (((𝑁 + 1) / 2) ∈ ℤ ∧ 0 < ((𝑁 + 1) / 2)))
19 elnnz 9071 . . . . 5 (((𝑁 + 1) / 2) ∈ ℕ ↔ (((𝑁 + 1) / 2) ∈ ℤ ∧ 0 < ((𝑁 + 1) / 2)))
2018, 19sylibr 133 . . . 4 ((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁 + 1) / 2) ∈ ℕ)
2120ex 114 . . 3 (𝑁 ∈ ℕ → (((𝑁 + 1) / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℕ))
22 nnz 9080 . . 3 (((𝑁 + 1) / 2) ∈ ℕ → ((𝑁 + 1) / 2) ∈ ℤ)
2321, 22impbid1 141 . 2 (𝑁 ∈ ℕ → (((𝑁 + 1) / 2) ∈ ℤ ↔ ((𝑁 + 1) / 2) ∈ ℕ))
243, 23bitrd 187 1 (𝑁 ∈ ℕ → (¬ 2 ∥ 𝑁 ↔ ((𝑁 + 1) / 2) ∈ ℕ))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 103   ↔ wb 104   ∈ wcel 1480   class class class wbr 3929  (class class class)co 5774  ℝcr 7626  0cc0 7627  1c1 7628   + caddc 7630   < clt 7807   / cdiv 8439  ℕcn 8727  2c2 8778  ℤcz 9061   ∥ cdvds 11499 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-1re 7721  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-mulrcl 7726  ax-addcom 7727  ax-mulcom 7728  ax-addass 7729  ax-mulass 7730  ax-distr 7731  ax-i2m1 7732  ax-0lt1 7733  ax-1rid 7734  ax-0id 7735  ax-rnegex 7736  ax-precex 7737  ax-cnre 7738  ax-pre-ltirr 7739  ax-pre-ltwlin 7740  ax-pre-lttrn 7741  ax-pre-apti 7742  ax-pre-ltadd 7743  ax-pre-mulgt0 7744  ax-pre-mulext 7745 This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-xor 1354  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7809  df-mnf 7810  df-xr 7811  df-ltxr 7812  df-le 7813  df-sub 7942  df-neg 7943  df-reap 8344  df-ap 8351  df-div 8440  df-inn 8728  df-2 8786  df-n0 8985  df-z 9062  df-dvds 11500 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator