![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnoddm1d2 | GIF version |
Description: A positive integer is odd iff its successor divided by 2 is a positive integer. (Contributed by AV, 28-Jun-2021.) |
Ref | Expression |
---|---|
nnoddm1d2 | ⊢ (𝑁 ∈ ℕ → (¬ 2 ∥ 𝑁 ↔ ((𝑁 + 1) / 2) ∈ ℕ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnz 9336 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
2 | oddp1d2 12031 | . . 3 ⊢ (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ((𝑁 + 1) / 2) ∈ ℤ)) | |
3 | 1, 2 | syl 14 | . 2 ⊢ (𝑁 ∈ ℕ → (¬ 2 ∥ 𝑁 ↔ ((𝑁 + 1) / 2) ∈ ℤ)) |
4 | peano2nn 8994 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ) | |
5 | 4 | nnred 8995 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℝ) |
6 | 2re 9052 | . . . . . . . . 9 ⊢ 2 ∈ ℝ | |
7 | 6 | a1i 9 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → 2 ∈ ℝ) |
8 | nnre 8989 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
9 | 1red 8034 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → 1 ∈ ℝ) | |
10 | nngt0 9007 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → 0 < 𝑁) | |
11 | 0lt1 8146 | . . . . . . . . . 10 ⊢ 0 < 1 | |
12 | 11 | a1i 9 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → 0 < 1) |
13 | 8, 9, 10, 12 | addgt0d 8540 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → 0 < (𝑁 + 1)) |
14 | 2pos 9073 | . . . . . . . . 9 ⊢ 0 < 2 | |
15 | 14 | a1i 9 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → 0 < 2) |
16 | 5, 7, 13, 15 | divgt0d 8954 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 0 < ((𝑁 + 1) / 2)) |
17 | 16 | anim1i 340 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (0 < ((𝑁 + 1) / 2) ∧ ((𝑁 + 1) / 2) ∈ ℤ)) |
18 | 17 | ancomd 267 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (((𝑁 + 1) / 2) ∈ ℤ ∧ 0 < ((𝑁 + 1) / 2))) |
19 | elnnz 9327 | . . . . 5 ⊢ (((𝑁 + 1) / 2) ∈ ℕ ↔ (((𝑁 + 1) / 2) ∈ ℤ ∧ 0 < ((𝑁 + 1) / 2))) | |
20 | 18, 19 | sylibr 134 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁 + 1) / 2) ∈ ℕ) |
21 | 20 | ex 115 | . . 3 ⊢ (𝑁 ∈ ℕ → (((𝑁 + 1) / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℕ)) |
22 | nnz 9336 | . . 3 ⊢ (((𝑁 + 1) / 2) ∈ ℕ → ((𝑁 + 1) / 2) ∈ ℤ) | |
23 | 21, 22 | impbid1 142 | . 2 ⊢ (𝑁 ∈ ℕ → (((𝑁 + 1) / 2) ∈ ℤ ↔ ((𝑁 + 1) / 2) ∈ ℕ)) |
24 | 3, 23 | bitrd 188 | 1 ⊢ (𝑁 ∈ ℕ → (¬ 2 ∥ 𝑁 ↔ ((𝑁 + 1) / 2) ∈ ℕ)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2164 class class class wbr 4029 (class class class)co 5918 ℝcr 7871 0cc0 7872 1c1 7873 + caddc 7875 < clt 8054 / cdiv 8691 ℕcn 8982 2c2 9033 ℤcz 9317 ∥ cdvds 11930 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-xor 1387 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-id 4324 df-po 4327 df-iso 4328 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-inn 8983 df-2 9041 df-n0 9241 df-z 9318 df-dvds 11931 |
This theorem is referenced by: gausslemma2dlem0b 15166 |
Copyright terms: Public domain | W3C validator |