Proof of Theorem coprmgcdb
| Step | Hyp | Ref
 | Expression | 
| 1 |   | nnz 9345 | 
. . . 4
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℤ) | 
| 2 |   | nnz 9345 | 
. . . 4
⊢ (𝐵 ∈ ℕ → 𝐵 ∈
ℤ) | 
| 3 |   | gcddvds 12130 | 
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) | 
| 4 | 1, 2, 3 | syl2an 289 | 
. . 3
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) | 
| 5 |   | simpr 110 | 
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) | 
| 6 |   | gcdnncl 12134 | 
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℕ) | 
| 7 | 6 | adantr 276 | 
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) → (𝐴 gcd 𝐵) ∈ ℕ) | 
| 8 |   | breq1 4036 | 
. . . . . . . 8
⊢ (𝑖 = (𝐴 gcd 𝐵) → (𝑖 ∥ 𝐴 ↔ (𝐴 gcd 𝐵) ∥ 𝐴)) | 
| 9 |   | breq1 4036 | 
. . . . . . . 8
⊢ (𝑖 = (𝐴 gcd 𝐵) → (𝑖 ∥ 𝐵 ↔ (𝐴 gcd 𝐵) ∥ 𝐵)) | 
| 10 | 8, 9 | anbi12d 473 | 
. . . . . . 7
⊢ (𝑖 = (𝐴 gcd 𝐵) → ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ↔ ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))) | 
| 11 |   | eqeq1 2203 | 
. . . . . . 7
⊢ (𝑖 = (𝐴 gcd 𝐵) → (𝑖 = 1 ↔ (𝐴 gcd 𝐵) = 1)) | 
| 12 | 10, 11 | imbi12d 234 | 
. . . . . 6
⊢ (𝑖 = (𝐴 gcd 𝐵) → (((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 = 1) ↔ (((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵) → (𝐴 gcd 𝐵) = 1))) | 
| 13 | 12 | rspcv 2864 | 
. . . . 5
⊢ ((𝐴 gcd 𝐵) ∈ ℕ → (∀𝑖 ∈ ℕ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 = 1) → (((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵) → (𝐴 gcd 𝐵) = 1))) | 
| 14 | 7, 13 | syl 14 | 
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) → (∀𝑖 ∈ ℕ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 = 1) → (((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵) → (𝐴 gcd 𝐵) = 1))) | 
| 15 | 5, 14 | mpid 42 | 
. . 3
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) → (∀𝑖 ∈ ℕ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 = 1) → (𝐴 gcd 𝐵) = 1)) | 
| 16 | 4, 15 | mpdan 421 | 
. 2
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) →
(∀𝑖 ∈ ℕ
((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 = 1) → (𝐴 gcd 𝐵) = 1)) | 
| 17 |   | simpl 109 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ)) | 
| 18 | 17 | anim1i 340 | 
. . . . . . . 8
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑖 ∈ ℕ) → ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈ ℕ)) | 
| 19 | 18 | ancomd 267 | 
. . . . . . 7
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑖 ∈ ℕ) → (𝑖 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ))) | 
| 20 |   | 3anass 984 | 
. . . . . . 7
⊢ ((𝑖 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ↔ (𝑖 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈
ℕ))) | 
| 21 | 19, 20 | sylibr 134 | 
. . . . . 6
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑖 ∈ ℕ) → (𝑖 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ)) | 
| 22 |   | nndvdslegcd 12132 | 
. . . . . 6
⊢ ((𝑖 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 ≤ (𝐴 gcd 𝐵))) | 
| 23 | 21, 22 | syl 14 | 
. . . . 5
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑖 ∈ ℕ) → ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 ≤ (𝐴 gcd 𝐵))) | 
| 24 |   | breq2 4037 | 
. . . . . . . 8
⊢ ((𝐴 gcd 𝐵) = 1 → (𝑖 ≤ (𝐴 gcd 𝐵) ↔ 𝑖 ≤ 1)) | 
| 25 | 24 | adantr 276 | 
. . . . . . 7
⊢ (((𝐴 gcd 𝐵) = 1 ∧ 𝑖 ∈ ℕ) → (𝑖 ≤ (𝐴 gcd 𝐵) ↔ 𝑖 ≤ 1)) | 
| 26 |   | nnge1 9013 | 
. . . . . . . . 9
⊢ (𝑖 ∈ ℕ → 1 ≤
𝑖) | 
| 27 |   | nnre 8997 | 
. . . . . . . . . . 11
⊢ (𝑖 ∈ ℕ → 𝑖 ∈
ℝ) | 
| 28 |   | 1red 8041 | 
. . . . . . . . . . 11
⊢ (𝑖 ∈ ℕ → 1 ∈
ℝ) | 
| 29 | 27, 28 | letri3d 8142 | 
. . . . . . . . . 10
⊢ (𝑖 ∈ ℕ → (𝑖 = 1 ↔ (𝑖 ≤ 1 ∧ 1 ≤ 𝑖))) | 
| 30 | 29 | biimprd 158 | 
. . . . . . . . 9
⊢ (𝑖 ∈ ℕ → ((𝑖 ≤ 1 ∧ 1 ≤ 𝑖) → 𝑖 = 1)) | 
| 31 | 26, 30 | mpan2d 428 | 
. . . . . . . 8
⊢ (𝑖 ∈ ℕ → (𝑖 ≤ 1 → 𝑖 = 1)) | 
| 32 | 31 | adantl 277 | 
. . . . . . 7
⊢ (((𝐴 gcd 𝐵) = 1 ∧ 𝑖 ∈ ℕ) → (𝑖 ≤ 1 → 𝑖 = 1)) | 
| 33 | 25, 32 | sylbid 150 | 
. . . . . 6
⊢ (((𝐴 gcd 𝐵) = 1 ∧ 𝑖 ∈ ℕ) → (𝑖 ≤ (𝐴 gcd 𝐵) → 𝑖 = 1)) | 
| 34 | 33 | adantll 476 | 
. . . . 5
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑖 ∈ ℕ) → (𝑖 ≤ (𝐴 gcd 𝐵) → 𝑖 = 1)) | 
| 35 | 23, 34 | syld 45 | 
. . . 4
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑖 ∈ ℕ) → ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 = 1)) | 
| 36 | 35 | ralrimiva 2570 | 
. . 3
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ∀𝑖 ∈ ℕ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 = 1)) | 
| 37 | 36 | ex 115 | 
. 2
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) = 1 → ∀𝑖 ∈ ℕ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 = 1))) | 
| 38 | 16, 37 | impbid 129 | 
1
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) →
(∀𝑖 ∈ ℕ
((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 = 1) ↔ (𝐴 gcd 𝐵) = 1)) |