ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sincosq2sgn GIF version

Theorem sincosq2sgn 15241
Description: The signs of the sine and cosine functions in the second quadrant. (Contributed by Paul Chapman, 24-Jan-2008.)
Assertion
Ref Expression
sincosq2sgn (𝐴 ∈ ((π / 2)(,)π) → (0 < (sin‘𝐴) ∧ (cos‘𝐴) < 0))

Proof of Theorem sincosq2sgn
StepHypRef Expression
1 halfpire 15206 . . 3 (π / 2) ∈ ℝ
2 pire 15200 . . 3 π ∈ ℝ
3 rexr 8117 . . . 4 ((π / 2) ∈ ℝ → (π / 2) ∈ ℝ*)
4 rexr 8117 . . . 4 (π ∈ ℝ → π ∈ ℝ*)
5 elioo2 10042 . . . 4 (((π / 2) ∈ ℝ* ∧ π ∈ ℝ*) → (𝐴 ∈ ((π / 2)(,)π) ↔ (𝐴 ∈ ℝ ∧ (π / 2) < 𝐴𝐴 < π)))
63, 4, 5syl2an 289 . . 3 (((π / 2) ∈ ℝ ∧ π ∈ ℝ) → (𝐴 ∈ ((π / 2)(,)π) ↔ (𝐴 ∈ ℝ ∧ (π / 2) < 𝐴𝐴 < π)))
71, 2, 6mp2an 426 . 2 (𝐴 ∈ ((π / 2)(,)π) ↔ (𝐴 ∈ ℝ ∧ (π / 2) < 𝐴𝐴 < π))
8 resubcl 8335 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (π / 2) ∈ ℝ) → (𝐴 − (π / 2)) ∈ ℝ)
91, 8mpan2 425 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 − (π / 2)) ∈ ℝ)
10 0xr 8118 . . . . . . . . . 10 0 ∈ ℝ*
111rexri 8129 . . . . . . . . . 10 (π / 2) ∈ ℝ*
12 elioo2 10042 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → ((𝐴 − (π / 2)) ∈ (0(,)(π / 2)) ↔ ((𝐴 − (π / 2)) ∈ ℝ ∧ 0 < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < (π / 2))))
1310, 11, 12mp2an 426 . . . . . . . . 9 ((𝐴 − (π / 2)) ∈ (0(,)(π / 2)) ↔ ((𝐴 − (π / 2)) ∈ ℝ ∧ 0 < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < (π / 2)))
14 sincosq1sgn 15240 . . . . . . . . 9 ((𝐴 − (π / 2)) ∈ (0(,)(π / 2)) → (0 < (sin‘(𝐴 − (π / 2))) ∧ 0 < (cos‘(𝐴 − (π / 2)))))
1513, 14sylbir 135 . . . . . . . 8 (((𝐴 − (π / 2)) ∈ ℝ ∧ 0 < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < (π / 2)) → (0 < (sin‘(𝐴 − (π / 2))) ∧ 0 < (cos‘(𝐴 − (π / 2)))))
169, 15syl3an1 1282 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < (π / 2)) → (0 < (sin‘(𝐴 − (π / 2))) ∧ 0 < (cos‘(𝐴 − (π / 2)))))
17163expib 1208 . . . . . 6 (𝐴 ∈ ℝ → ((0 < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < (π / 2)) → (0 < (sin‘(𝐴 − (π / 2))) ∧ 0 < (cos‘(𝐴 − (π / 2))))))
18 0re 8071 . . . . . . . . 9 0 ∈ ℝ
19 ltsub13 8515 . . . . . . . . 9 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (π / 2) ∈ ℝ) → (0 < (𝐴 − (π / 2)) ↔ (π / 2) < (𝐴 − 0)))
2018, 1, 19mp3an13 1340 . . . . . . . 8 (𝐴 ∈ ℝ → (0 < (𝐴 − (π / 2)) ↔ (π / 2) < (𝐴 − 0)))
21 recn 8057 . . . . . . . . . 10 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2221subid1d 8371 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 − 0) = 𝐴)
2322breq2d 4055 . . . . . . . 8 (𝐴 ∈ ℝ → ((π / 2) < (𝐴 − 0) ↔ (π / 2) < 𝐴))
2420, 23bitrd 188 . . . . . . 7 (𝐴 ∈ ℝ → (0 < (𝐴 − (π / 2)) ↔ (π / 2) < 𝐴))
25 ltsubadd 8504 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (π / 2) ∈ ℝ ∧ (π / 2) ∈ ℝ) → ((𝐴 − (π / 2)) < (π / 2) ↔ 𝐴 < ((π / 2) + (π / 2))))
261, 1, 25mp3an23 1341 . . . . . . . 8 (𝐴 ∈ ℝ → ((𝐴 − (π / 2)) < (π / 2) ↔ 𝐴 < ((π / 2) + (π / 2))))
27 pidiv2halves 15209 . . . . . . . . 9 ((π / 2) + (π / 2)) = π
2827breq2i 4051 . . . . . . . 8 (𝐴 < ((π / 2) + (π / 2)) ↔ 𝐴 < π)
2926, 28bitrdi 196 . . . . . . 7 (𝐴 ∈ ℝ → ((𝐴 − (π / 2)) < (π / 2) ↔ 𝐴 < π))
3024, 29anbi12d 473 . . . . . 6 (𝐴 ∈ ℝ → ((0 < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < (π / 2)) ↔ ((π / 2) < 𝐴𝐴 < π)))
319resincld 11976 . . . . . . . 8 (𝐴 ∈ ℝ → (sin‘(𝐴 − (π / 2))) ∈ ℝ)
3231lt0neg2d 8588 . . . . . . 7 (𝐴 ∈ ℝ → (0 < (sin‘(𝐴 − (π / 2))) ↔ -(sin‘(𝐴 − (π / 2))) < 0))
3332anbi1d 465 . . . . . 6 (𝐴 ∈ ℝ → ((0 < (sin‘(𝐴 − (π / 2))) ∧ 0 < (cos‘(𝐴 − (π / 2)))) ↔ (-(sin‘(𝐴 − (π / 2))) < 0 ∧ 0 < (cos‘(𝐴 − (π / 2))))))
3417, 30, 333imtr3d 202 . . . . 5 (𝐴 ∈ ℝ → (((π / 2) < 𝐴𝐴 < π) → (-(sin‘(𝐴 − (π / 2))) < 0 ∧ 0 < (cos‘(𝐴 − (π / 2))))))
351recni 8083 . . . . . . . . . 10 (π / 2) ∈ ℂ
36 pncan3 8279 . . . . . . . . . 10 (((π / 2) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((π / 2) + (𝐴 − (π / 2))) = 𝐴)
3735, 21, 36sylancr 414 . . . . . . . . 9 (𝐴 ∈ ℝ → ((π / 2) + (𝐴 − (π / 2))) = 𝐴)
3837fveq2d 5579 . . . . . . . 8 (𝐴 ∈ ℝ → (cos‘((π / 2) + (𝐴 − (π / 2)))) = (cos‘𝐴))
399recnd 8100 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 − (π / 2)) ∈ ℂ)
40 coshalfpip 15236 . . . . . . . . 9 ((𝐴 − (π / 2)) ∈ ℂ → (cos‘((π / 2) + (𝐴 − (π / 2)))) = -(sin‘(𝐴 − (π / 2))))
4139, 40syl 14 . . . . . . . 8 (𝐴 ∈ ℝ → (cos‘((π / 2) + (𝐴 − (π / 2)))) = -(sin‘(𝐴 − (π / 2))))
4238, 41eqtr3d 2239 . . . . . . 7 (𝐴 ∈ ℝ → (cos‘𝐴) = -(sin‘(𝐴 − (π / 2))))
4342breq1d 4053 . . . . . 6 (𝐴 ∈ ℝ → ((cos‘𝐴) < 0 ↔ -(sin‘(𝐴 − (π / 2))) < 0))
4437fveq2d 5579 . . . . . . . 8 (𝐴 ∈ ℝ → (sin‘((π / 2) + (𝐴 − (π / 2)))) = (sin‘𝐴))
45 sinhalfpip 15234 . . . . . . . . 9 ((𝐴 − (π / 2)) ∈ ℂ → (sin‘((π / 2) + (𝐴 − (π / 2)))) = (cos‘(𝐴 − (π / 2))))
4639, 45syl 14 . . . . . . . 8 (𝐴 ∈ ℝ → (sin‘((π / 2) + (𝐴 − (π / 2)))) = (cos‘(𝐴 − (π / 2))))
4744, 46eqtr3d 2239 . . . . . . 7 (𝐴 ∈ ℝ → (sin‘𝐴) = (cos‘(𝐴 − (π / 2))))
4847breq2d 4055 . . . . . 6 (𝐴 ∈ ℝ → (0 < (sin‘𝐴) ↔ 0 < (cos‘(𝐴 − (π / 2)))))
4943, 48anbi12d 473 . . . . 5 (𝐴 ∈ ℝ → (((cos‘𝐴) < 0 ∧ 0 < (sin‘𝐴)) ↔ (-(sin‘(𝐴 − (π / 2))) < 0 ∧ 0 < (cos‘(𝐴 − (π / 2))))))
5034, 49sylibrd 169 . . . 4 (𝐴 ∈ ℝ → (((π / 2) < 𝐴𝐴 < π) → ((cos‘𝐴) < 0 ∧ 0 < (sin‘𝐴))))
51503impib 1203 . . 3 ((𝐴 ∈ ℝ ∧ (π / 2) < 𝐴𝐴 < π) → ((cos‘𝐴) < 0 ∧ 0 < (sin‘𝐴)))
5251ancomd 267 . 2 ((𝐴 ∈ ℝ ∧ (π / 2) < 𝐴𝐴 < π) → (0 < (sin‘𝐴) ∧ (cos‘𝐴) < 0))
537, 52sylbi 121 1 (𝐴 ∈ ((π / 2)(,)π) → (0 < (sin‘𝐴) ∧ (cos‘𝐴) < 0))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1372  wcel 2175   class class class wbr 4043  cfv 5270  (class class class)co 5943  cc 7922  cr 7923  0cc0 7924   + caddc 7927  *cxr 8105   < clt 8106  cmin 8242  -cneg 8243   / cdiv 8744  2c2 9086  (,)cioo 10009  sincsin 11897  cosccos 11898  πcpi 11900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042  ax-arch 8043  ax-caucvg 8044  ax-pre-suploc 8045  ax-addf 8046  ax-mulf 8047
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-disj 4021  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-isom 5279  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-of 6157  df-1st 6225  df-2nd 6226  df-recs 6390  df-irdg 6455  df-frec 6476  df-1o 6501  df-oadd 6505  df-er 6619  df-map 6736  df-pm 6737  df-en 6827  df-dom 6828  df-fin 6829  df-sup 7085  df-inf 7086  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-5 9097  df-6 9098  df-7 9099  df-8 9100  df-9 9101  df-n0 9295  df-z 9372  df-uz 9648  df-q 9740  df-rp 9775  df-xneg 9893  df-xadd 9894  df-ioo 10013  df-ioc 10014  df-ico 10015  df-icc 10016  df-fz 10130  df-fzo 10264  df-seqfrec 10591  df-exp 10682  df-fac 10869  df-bc 10891  df-ihash 10919  df-shft 11068  df-cj 11095  df-re 11096  df-im 11097  df-rsqrt 11251  df-abs 11252  df-clim 11532  df-sumdc 11607  df-ef 11901  df-sin 11903  df-cos 11904  df-pi 11906  df-rest 13015  df-topgen 13034  df-psmet 14247  df-xmet 14248  df-met 14249  df-bl 14250  df-mopn 14251  df-top 14412  df-topon 14425  df-bases 14457  df-ntr 14510  df-cn 14602  df-cnp 14603  df-tx 14667  df-cncf 14985  df-limced 15070  df-dvap 15071
This theorem is referenced by:  sincosq3sgn  15242
  Copyright terms: Public domain W3C validator