ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sincosq2sgn GIF version

Theorem sincosq2sgn 13501
Description: The signs of the sine and cosine functions in the second quadrant. (Contributed by Paul Chapman, 24-Jan-2008.)
Assertion
Ref Expression
sincosq2sgn (𝐴 ∈ ((π / 2)(,)π) → (0 < (sin‘𝐴) ∧ (cos‘𝐴) < 0))

Proof of Theorem sincosq2sgn
StepHypRef Expression
1 halfpire 13466 . . 3 (π / 2) ∈ ℝ
2 pire 13460 . . 3 π ∈ ℝ
3 rexr 7952 . . . 4 ((π / 2) ∈ ℝ → (π / 2) ∈ ℝ*)
4 rexr 7952 . . . 4 (π ∈ ℝ → π ∈ ℝ*)
5 elioo2 9865 . . . 4 (((π / 2) ∈ ℝ* ∧ π ∈ ℝ*) → (𝐴 ∈ ((π / 2)(,)π) ↔ (𝐴 ∈ ℝ ∧ (π / 2) < 𝐴𝐴 < π)))
63, 4, 5syl2an 287 . . 3 (((π / 2) ∈ ℝ ∧ π ∈ ℝ) → (𝐴 ∈ ((π / 2)(,)π) ↔ (𝐴 ∈ ℝ ∧ (π / 2) < 𝐴𝐴 < π)))
71, 2, 6mp2an 424 . 2 (𝐴 ∈ ((π / 2)(,)π) ↔ (𝐴 ∈ ℝ ∧ (π / 2) < 𝐴𝐴 < π))
8 resubcl 8170 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (π / 2) ∈ ℝ) → (𝐴 − (π / 2)) ∈ ℝ)
91, 8mpan2 423 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 − (π / 2)) ∈ ℝ)
10 0xr 7953 . . . . . . . . . 10 0 ∈ ℝ*
111rexri 7964 . . . . . . . . . 10 (π / 2) ∈ ℝ*
12 elioo2 9865 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → ((𝐴 − (π / 2)) ∈ (0(,)(π / 2)) ↔ ((𝐴 − (π / 2)) ∈ ℝ ∧ 0 < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < (π / 2))))
1310, 11, 12mp2an 424 . . . . . . . . 9 ((𝐴 − (π / 2)) ∈ (0(,)(π / 2)) ↔ ((𝐴 − (π / 2)) ∈ ℝ ∧ 0 < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < (π / 2)))
14 sincosq1sgn 13500 . . . . . . . . 9 ((𝐴 − (π / 2)) ∈ (0(,)(π / 2)) → (0 < (sin‘(𝐴 − (π / 2))) ∧ 0 < (cos‘(𝐴 − (π / 2)))))
1513, 14sylbir 134 . . . . . . . 8 (((𝐴 − (π / 2)) ∈ ℝ ∧ 0 < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < (π / 2)) → (0 < (sin‘(𝐴 − (π / 2))) ∧ 0 < (cos‘(𝐴 − (π / 2)))))
169, 15syl3an1 1266 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < (π / 2)) → (0 < (sin‘(𝐴 − (π / 2))) ∧ 0 < (cos‘(𝐴 − (π / 2)))))
17163expib 1201 . . . . . 6 (𝐴 ∈ ℝ → ((0 < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < (π / 2)) → (0 < (sin‘(𝐴 − (π / 2))) ∧ 0 < (cos‘(𝐴 − (π / 2))))))
18 0re 7907 . . . . . . . . 9 0 ∈ ℝ
19 ltsub13 8349 . . . . . . . . 9 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (π / 2) ∈ ℝ) → (0 < (𝐴 − (π / 2)) ↔ (π / 2) < (𝐴 − 0)))
2018, 1, 19mp3an13 1323 . . . . . . . 8 (𝐴 ∈ ℝ → (0 < (𝐴 − (π / 2)) ↔ (π / 2) < (𝐴 − 0)))
21 recn 7894 . . . . . . . . . 10 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2221subid1d 8206 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 − 0) = 𝐴)
2322breq2d 3999 . . . . . . . 8 (𝐴 ∈ ℝ → ((π / 2) < (𝐴 − 0) ↔ (π / 2) < 𝐴))
2420, 23bitrd 187 . . . . . . 7 (𝐴 ∈ ℝ → (0 < (𝐴 − (π / 2)) ↔ (π / 2) < 𝐴))
25 ltsubadd 8338 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (π / 2) ∈ ℝ ∧ (π / 2) ∈ ℝ) → ((𝐴 − (π / 2)) < (π / 2) ↔ 𝐴 < ((π / 2) + (π / 2))))
261, 1, 25mp3an23 1324 . . . . . . . 8 (𝐴 ∈ ℝ → ((𝐴 − (π / 2)) < (π / 2) ↔ 𝐴 < ((π / 2) + (π / 2))))
27 pidiv2halves 13469 . . . . . . . . 9 ((π / 2) + (π / 2)) = π
2827breq2i 3995 . . . . . . . 8 (𝐴 < ((π / 2) + (π / 2)) ↔ 𝐴 < π)
2926, 28bitrdi 195 . . . . . . 7 (𝐴 ∈ ℝ → ((𝐴 − (π / 2)) < (π / 2) ↔ 𝐴 < π))
3024, 29anbi12d 470 . . . . . 6 (𝐴 ∈ ℝ → ((0 < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < (π / 2)) ↔ ((π / 2) < 𝐴𝐴 < π)))
319resincld 11673 . . . . . . . 8 (𝐴 ∈ ℝ → (sin‘(𝐴 − (π / 2))) ∈ ℝ)
3231lt0neg2d 8422 . . . . . . 7 (𝐴 ∈ ℝ → (0 < (sin‘(𝐴 − (π / 2))) ↔ -(sin‘(𝐴 − (π / 2))) < 0))
3332anbi1d 462 . . . . . 6 (𝐴 ∈ ℝ → ((0 < (sin‘(𝐴 − (π / 2))) ∧ 0 < (cos‘(𝐴 − (π / 2)))) ↔ (-(sin‘(𝐴 − (π / 2))) < 0 ∧ 0 < (cos‘(𝐴 − (π / 2))))))
3417, 30, 333imtr3d 201 . . . . 5 (𝐴 ∈ ℝ → (((π / 2) < 𝐴𝐴 < π) → (-(sin‘(𝐴 − (π / 2))) < 0 ∧ 0 < (cos‘(𝐴 − (π / 2))))))
351recni 7919 . . . . . . . . . 10 (π / 2) ∈ ℂ
36 pncan3 8114 . . . . . . . . . 10 (((π / 2) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((π / 2) + (𝐴 − (π / 2))) = 𝐴)
3735, 21, 36sylancr 412 . . . . . . . . 9 (𝐴 ∈ ℝ → ((π / 2) + (𝐴 − (π / 2))) = 𝐴)
3837fveq2d 5498 . . . . . . . 8 (𝐴 ∈ ℝ → (cos‘((π / 2) + (𝐴 − (π / 2)))) = (cos‘𝐴))
399recnd 7935 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 − (π / 2)) ∈ ℂ)
40 coshalfpip 13496 . . . . . . . . 9 ((𝐴 − (π / 2)) ∈ ℂ → (cos‘((π / 2) + (𝐴 − (π / 2)))) = -(sin‘(𝐴 − (π / 2))))
4139, 40syl 14 . . . . . . . 8 (𝐴 ∈ ℝ → (cos‘((π / 2) + (𝐴 − (π / 2)))) = -(sin‘(𝐴 − (π / 2))))
4238, 41eqtr3d 2205 . . . . . . 7 (𝐴 ∈ ℝ → (cos‘𝐴) = -(sin‘(𝐴 − (π / 2))))
4342breq1d 3997 . . . . . 6 (𝐴 ∈ ℝ → ((cos‘𝐴) < 0 ↔ -(sin‘(𝐴 − (π / 2))) < 0))
4437fveq2d 5498 . . . . . . . 8 (𝐴 ∈ ℝ → (sin‘((π / 2) + (𝐴 − (π / 2)))) = (sin‘𝐴))
45 sinhalfpip 13494 . . . . . . . . 9 ((𝐴 − (π / 2)) ∈ ℂ → (sin‘((π / 2) + (𝐴 − (π / 2)))) = (cos‘(𝐴 − (π / 2))))
4639, 45syl 14 . . . . . . . 8 (𝐴 ∈ ℝ → (sin‘((π / 2) + (𝐴 − (π / 2)))) = (cos‘(𝐴 − (π / 2))))
4744, 46eqtr3d 2205 . . . . . . 7 (𝐴 ∈ ℝ → (sin‘𝐴) = (cos‘(𝐴 − (π / 2))))
4847breq2d 3999 . . . . . 6 (𝐴 ∈ ℝ → (0 < (sin‘𝐴) ↔ 0 < (cos‘(𝐴 − (π / 2)))))
4943, 48anbi12d 470 . . . . 5 (𝐴 ∈ ℝ → (((cos‘𝐴) < 0 ∧ 0 < (sin‘𝐴)) ↔ (-(sin‘(𝐴 − (π / 2))) < 0 ∧ 0 < (cos‘(𝐴 − (π / 2))))))
5034, 49sylibrd 168 . . . 4 (𝐴 ∈ ℝ → (((π / 2) < 𝐴𝐴 < π) → ((cos‘𝐴) < 0 ∧ 0 < (sin‘𝐴))))
51503impib 1196 . . 3 ((𝐴 ∈ ℝ ∧ (π / 2) < 𝐴𝐴 < π) → ((cos‘𝐴) < 0 ∧ 0 < (sin‘𝐴)))
5251ancomd 265 . 2 ((𝐴 ∈ ℝ ∧ (π / 2) < 𝐴𝐴 < π) → (0 < (sin‘𝐴) ∧ (cos‘𝐴) < 0))
537, 52sylbi 120 1 (𝐴 ∈ ((π / 2)(,)π) → (0 < (sin‘𝐴) ∧ (cos‘𝐴) < 0))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 973   = wceq 1348  wcel 2141   class class class wbr 3987  cfv 5196  (class class class)co 5850  cc 7759  cr 7760  0cc0 7761   + caddc 7764  *cxr 7940   < clt 7941  cmin 8077  -cneg 8078   / cdiv 8576  2c2 8916  (,)cioo 9832  sincsin 11594  cosccos 11595  πcpi 11597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7852  ax-resscn 7853  ax-1cn 7854  ax-1re 7855  ax-icn 7856  ax-addcl 7857  ax-addrcl 7858  ax-mulcl 7859  ax-mulrcl 7860  ax-addcom 7861  ax-mulcom 7862  ax-addass 7863  ax-mulass 7864  ax-distr 7865  ax-i2m1 7866  ax-0lt1 7867  ax-1rid 7868  ax-0id 7869  ax-rnegex 7870  ax-precex 7871  ax-cnre 7872  ax-pre-ltirr 7873  ax-pre-ltwlin 7874  ax-pre-lttrn 7875  ax-pre-apti 7876  ax-pre-ltadd 7877  ax-pre-mulgt0 7878  ax-pre-mulext 7879  ax-arch 7880  ax-caucvg 7881  ax-pre-suploc 7882  ax-addf 7883  ax-mulf 7884
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-disj 3965  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-isom 5205  df-riota 5806  df-ov 5853  df-oprab 5854  df-mpo 5855  df-of 6058  df-1st 6116  df-2nd 6117  df-recs 6281  df-irdg 6346  df-frec 6367  df-1o 6392  df-oadd 6396  df-er 6509  df-map 6624  df-pm 6625  df-en 6715  df-dom 6716  df-fin 6717  df-sup 6957  df-inf 6958  df-pnf 7943  df-mnf 7944  df-xr 7945  df-ltxr 7946  df-le 7947  df-sub 8079  df-neg 8080  df-reap 8481  df-ap 8488  df-div 8577  df-inn 8866  df-2 8924  df-3 8925  df-4 8926  df-5 8927  df-6 8928  df-7 8929  df-8 8930  df-9 8931  df-n0 9123  df-z 9200  df-uz 9475  df-q 9566  df-rp 9598  df-xneg 9716  df-xadd 9717  df-ioo 9836  df-ioc 9837  df-ico 9838  df-icc 9839  df-fz 9953  df-fzo 10086  df-seqfrec 10389  df-exp 10463  df-fac 10647  df-bc 10669  df-ihash 10697  df-shft 10766  df-cj 10793  df-re 10794  df-im 10795  df-rsqrt 10949  df-abs 10950  df-clim 11229  df-sumdc 11304  df-ef 11598  df-sin 11600  df-cos 11601  df-pi 11603  df-rest 12568  df-topgen 12587  df-psmet 12740  df-xmet 12741  df-met 12742  df-bl 12743  df-mopn 12744  df-top 12749  df-topon 12762  df-bases 12794  df-ntr 12849  df-cn 12941  df-cnp 12942  df-tx 13006  df-cncf 13311  df-limced 13378  df-dvap 13379
This theorem is referenced by:  sincosq3sgn  13502
  Copyright terms: Public domain W3C validator