![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nn0oddm1d2 | GIF version |
Description: A positive integer is odd iff its predecessor divided by 2 is a positive integer. (Contributed by AV, 28-Jun-2021.) |
Ref | Expression |
---|---|
nn0oddm1d2 | ⊢ (𝑁 ∈ ℕ0 → (¬ 2 ∥ 𝑁 ↔ ((𝑁 − 1) / 2) ∈ ℕ0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0z 8978 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
2 | oddp1d2 11435 | . . 3 ⊢ (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ((𝑁 + 1) / 2) ∈ ℤ)) | |
3 | 1, 2 | syl 14 | . 2 ⊢ (𝑁 ∈ ℕ0 → (¬ 2 ∥ 𝑁 ↔ ((𝑁 + 1) / 2) ∈ ℤ)) |
4 | nn0re 8890 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
5 | 1red 7705 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → 1 ∈ ℝ) | |
6 | nn0ge0 8906 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) | |
7 | 0le1 8162 | . . . . . . . . . 10 ⊢ 0 ≤ 1 | |
8 | 7 | a1i 9 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 1) |
9 | 4, 5, 6, 8 | addge0d 8202 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ (𝑁 + 1)) |
10 | peano2nn0 8921 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0) | |
11 | 10 | nn0red 8935 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℝ) |
12 | 2re 8700 | . . . . . . . . . 10 ⊢ 2 ∈ ℝ | |
13 | 12 | a1i 9 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → 2 ∈ ℝ) |
14 | 2pos 8721 | . . . . . . . . . 10 ⊢ 0 < 2 | |
15 | 14 | a1i 9 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → 0 < 2) |
16 | ge0div 8539 | . . . . . . . . 9 ⊢ (((𝑁 + 1) ∈ ℝ ∧ 2 ∈ ℝ ∧ 0 < 2) → (0 ≤ (𝑁 + 1) ↔ 0 ≤ ((𝑁 + 1) / 2))) | |
17 | 11, 13, 15, 16 | syl3anc 1199 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → (0 ≤ (𝑁 + 1) ↔ 0 ≤ ((𝑁 + 1) / 2))) |
18 | 9, 17 | mpbid 146 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ ((𝑁 + 1) / 2)) |
19 | 18 | anim1i 336 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (0 ≤ ((𝑁 + 1) / 2) ∧ ((𝑁 + 1) / 2) ∈ ℤ)) |
20 | 19 | ancomd 265 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (((𝑁 + 1) / 2) ∈ ℤ ∧ 0 ≤ ((𝑁 + 1) / 2))) |
21 | elnn0z 8971 | . . . . 5 ⊢ (((𝑁 + 1) / 2) ∈ ℕ0 ↔ (((𝑁 + 1) / 2) ∈ ℤ ∧ 0 ≤ ((𝑁 + 1) / 2))) | |
22 | 20, 21 | sylibr 133 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁 + 1) / 2) ∈ ℕ0) |
23 | 22 | ex 114 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℕ0)) |
24 | nn0z 8978 | . . 3 ⊢ (((𝑁 + 1) / 2) ∈ ℕ0 → ((𝑁 + 1) / 2) ∈ ℤ) | |
25 | 23, 24 | impbid1 141 | . 2 ⊢ (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℤ ↔ ((𝑁 + 1) / 2) ∈ ℕ0)) |
26 | nn0ob 11453 | . 2 ⊢ (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 ↔ ((𝑁 − 1) / 2) ∈ ℕ0)) | |
27 | 3, 25, 26 | 3bitrd 213 | 1 ⊢ (𝑁 ∈ ℕ0 → (¬ 2 ∥ 𝑁 ↔ ((𝑁 − 1) / 2) ∈ ℕ0)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∈ wcel 1463 class class class wbr 3895 (class class class)co 5728 ℝcr 7546 0cc0 7547 1c1 7548 + caddc 7550 < clt 7724 ≤ cle 7725 − cmin 7856 / cdiv 8345 2c2 8681 ℕ0cn0 8881 ℤcz 8958 ∥ cdvds 11341 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-13 1474 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-sep 4006 ax-pow 4058 ax-pr 4091 ax-un 4315 ax-setind 4412 ax-cnex 7636 ax-resscn 7637 ax-1cn 7638 ax-1re 7639 ax-icn 7640 ax-addcl 7641 ax-addrcl 7642 ax-mulcl 7643 ax-mulrcl 7644 ax-addcom 7645 ax-mulcom 7646 ax-addass 7647 ax-mulass 7648 ax-distr 7649 ax-i2m1 7650 ax-0lt1 7651 ax-1rid 7652 ax-0id 7653 ax-rnegex 7654 ax-precex 7655 ax-cnre 7656 ax-pre-ltirr 7657 ax-pre-ltwlin 7658 ax-pre-lttrn 7659 ax-pre-apti 7660 ax-pre-ltadd 7661 ax-pre-mulgt0 7662 ax-pre-mulext 7663 |
This theorem depends on definitions: df-bi 116 df-3or 946 df-3an 947 df-tru 1317 df-fal 1320 df-xor 1337 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ne 2283 df-nel 2378 df-ral 2395 df-rex 2396 df-reu 2397 df-rmo 2398 df-rab 2399 df-v 2659 df-sbc 2879 df-dif 3039 df-un 3041 df-in 3043 df-ss 3050 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-int 3738 df-br 3896 df-opab 3950 df-mpt 3951 df-id 4175 df-po 4178 df-iso 4179 df-xp 4505 df-rel 4506 df-cnv 4507 df-co 4508 df-dm 4509 df-rn 4510 df-res 4511 df-ima 4512 df-iota 5046 df-fun 5083 df-fn 5084 df-f 5085 df-fv 5089 df-riota 5684 df-ov 5731 df-oprab 5732 df-mpo 5733 df-pnf 7726 df-mnf 7727 df-xr 7728 df-ltxr 7729 df-le 7730 df-sub 7858 df-neg 7859 df-reap 8255 df-ap 8262 df-div 8346 df-inn 8631 df-2 8689 df-3 8690 df-4 8691 df-n0 8882 df-z 8959 df-uz 9229 df-dvds 11342 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |