| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0oddm1d2 | GIF version | ||
| Description: A positive integer is odd iff its predecessor divided by 2 is a positive integer. (Contributed by AV, 28-Jun-2021.) |
| Ref | Expression |
|---|---|
| nn0oddm1d2 | ⊢ (𝑁 ∈ ℕ0 → (¬ 2 ∥ 𝑁 ↔ ((𝑁 − 1) / 2) ∈ ℕ0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0z 9346 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
| 2 | oddp1d2 12055 | . . 3 ⊢ (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ((𝑁 + 1) / 2) ∈ ℤ)) | |
| 3 | 1, 2 | syl 14 | . 2 ⊢ (𝑁 ∈ ℕ0 → (¬ 2 ∥ 𝑁 ↔ ((𝑁 + 1) / 2) ∈ ℤ)) |
| 4 | nn0re 9258 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
| 5 | 1red 8041 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → 1 ∈ ℝ) | |
| 6 | nn0ge0 9274 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) | |
| 7 | 0le1 8508 | . . . . . . . . . 10 ⊢ 0 ≤ 1 | |
| 8 | 7 | a1i 9 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 1) |
| 9 | 4, 5, 6, 8 | addge0d 8549 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ (𝑁 + 1)) |
| 10 | peano2nn0 9289 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0) | |
| 11 | 10 | nn0red 9303 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℝ) |
| 12 | 2re 9060 | . . . . . . . . . 10 ⊢ 2 ∈ ℝ | |
| 13 | 12 | a1i 9 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → 2 ∈ ℝ) |
| 14 | 2pos 9081 | . . . . . . . . . 10 ⊢ 0 < 2 | |
| 15 | 14 | a1i 9 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → 0 < 2) |
| 16 | ge0div 8898 | . . . . . . . . 9 ⊢ (((𝑁 + 1) ∈ ℝ ∧ 2 ∈ ℝ ∧ 0 < 2) → (0 ≤ (𝑁 + 1) ↔ 0 ≤ ((𝑁 + 1) / 2))) | |
| 17 | 11, 13, 15, 16 | syl3anc 1249 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → (0 ≤ (𝑁 + 1) ↔ 0 ≤ ((𝑁 + 1) / 2))) |
| 18 | 9, 17 | mpbid 147 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ ((𝑁 + 1) / 2)) |
| 19 | 18 | anim1i 340 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (0 ≤ ((𝑁 + 1) / 2) ∧ ((𝑁 + 1) / 2) ∈ ℤ)) |
| 20 | 19 | ancomd 267 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (((𝑁 + 1) / 2) ∈ ℤ ∧ 0 ≤ ((𝑁 + 1) / 2))) |
| 21 | elnn0z 9339 | . . . . 5 ⊢ (((𝑁 + 1) / 2) ∈ ℕ0 ↔ (((𝑁 + 1) / 2) ∈ ℤ ∧ 0 ≤ ((𝑁 + 1) / 2))) | |
| 22 | 20, 21 | sylibr 134 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁 + 1) / 2) ∈ ℕ0) |
| 23 | 22 | ex 115 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℕ0)) |
| 24 | nn0z 9346 | . . 3 ⊢ (((𝑁 + 1) / 2) ∈ ℕ0 → ((𝑁 + 1) / 2) ∈ ℤ) | |
| 25 | 23, 24 | impbid1 142 | . 2 ⊢ (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℤ ↔ ((𝑁 + 1) / 2) ∈ ℕ0)) |
| 26 | nn0ob 12073 | . 2 ⊢ (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 ↔ ((𝑁 − 1) / 2) ∈ ℕ0)) | |
| 27 | 3, 25, 26 | 3bitrd 214 | 1 ⊢ (𝑁 ∈ ℕ0 → (¬ 2 ∥ 𝑁 ↔ ((𝑁 − 1) / 2) ∈ ℕ0)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2167 class class class wbr 4033 (class class class)co 5922 ℝcr 7878 0cc0 7879 1c1 7880 + caddc 7882 < clt 8061 ≤ cle 8062 − cmin 8197 / cdiv 8699 2c2 9041 ℕ0cn0 9249 ℤcz 9326 ∥ cdvds 11952 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-xor 1387 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-po 4331 df-iso 4332 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-dvds 11953 |
| This theorem is referenced by: lgsval 15245 lgsfvalg 15246 gausslemma2dlem6 15308 |
| Copyright terms: Public domain | W3C validator |