| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0oddm1d2 | GIF version | ||
| Description: A positive integer is odd iff its predecessor divided by 2 is a positive integer. (Contributed by AV, 28-Jun-2021.) |
| Ref | Expression |
|---|---|
| nn0oddm1d2 | ⊢ (𝑁 ∈ ℕ0 → (¬ 2 ∥ 𝑁 ↔ ((𝑁 − 1) / 2) ∈ ℕ0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0z 9474 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
| 2 | oddp1d2 12409 | . . 3 ⊢ (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ((𝑁 + 1) / 2) ∈ ℤ)) | |
| 3 | 1, 2 | syl 14 | . 2 ⊢ (𝑁 ∈ ℕ0 → (¬ 2 ∥ 𝑁 ↔ ((𝑁 + 1) / 2) ∈ ℤ)) |
| 4 | nn0re 9386 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
| 5 | 1red 8169 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → 1 ∈ ℝ) | |
| 6 | nn0ge0 9402 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) | |
| 7 | 0le1 8636 | . . . . . . . . . 10 ⊢ 0 ≤ 1 | |
| 8 | 7 | a1i 9 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 1) |
| 9 | 4, 5, 6, 8 | addge0d 8677 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ (𝑁 + 1)) |
| 10 | peano2nn0 9417 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0) | |
| 11 | 10 | nn0red 9431 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℝ) |
| 12 | 2re 9188 | . . . . . . . . . 10 ⊢ 2 ∈ ℝ | |
| 13 | 12 | a1i 9 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → 2 ∈ ℝ) |
| 14 | 2pos 9209 | . . . . . . . . . 10 ⊢ 0 < 2 | |
| 15 | 14 | a1i 9 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → 0 < 2) |
| 16 | ge0div 9026 | . . . . . . . . 9 ⊢ (((𝑁 + 1) ∈ ℝ ∧ 2 ∈ ℝ ∧ 0 < 2) → (0 ≤ (𝑁 + 1) ↔ 0 ≤ ((𝑁 + 1) / 2))) | |
| 17 | 11, 13, 15, 16 | syl3anc 1271 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → (0 ≤ (𝑁 + 1) ↔ 0 ≤ ((𝑁 + 1) / 2))) |
| 18 | 9, 17 | mpbid 147 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ ((𝑁 + 1) / 2)) |
| 19 | 18 | anim1i 340 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (0 ≤ ((𝑁 + 1) / 2) ∧ ((𝑁 + 1) / 2) ∈ ℤ)) |
| 20 | 19 | ancomd 267 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (((𝑁 + 1) / 2) ∈ ℤ ∧ 0 ≤ ((𝑁 + 1) / 2))) |
| 21 | elnn0z 9467 | . . . . 5 ⊢ (((𝑁 + 1) / 2) ∈ ℕ0 ↔ (((𝑁 + 1) / 2) ∈ ℤ ∧ 0 ≤ ((𝑁 + 1) / 2))) | |
| 22 | 20, 21 | sylibr 134 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁 + 1) / 2) ∈ ℕ0) |
| 23 | 22 | ex 115 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℕ0)) |
| 24 | nn0z 9474 | . . 3 ⊢ (((𝑁 + 1) / 2) ∈ ℕ0 → ((𝑁 + 1) / 2) ∈ ℤ) | |
| 25 | 23, 24 | impbid1 142 | . 2 ⊢ (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℤ ↔ ((𝑁 + 1) / 2) ∈ ℕ0)) |
| 26 | nn0ob 12427 | . 2 ⊢ (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 ↔ ((𝑁 − 1) / 2) ∈ ℕ0)) | |
| 27 | 3, 25, 26 | 3bitrd 214 | 1 ⊢ (𝑁 ∈ ℕ0 → (¬ 2 ∥ 𝑁 ↔ ((𝑁 − 1) / 2) ∈ ℕ0)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2200 class class class wbr 4083 (class class class)co 6007 ℝcr 8006 0cc0 8007 1c1 8008 + caddc 8010 < clt 8189 ≤ cle 8190 − cmin 8325 / cdiv 8827 2c2 9169 ℕ0cn0 9377 ℤcz 9454 ∥ cdvds 12306 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-xor 1418 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-po 4387 df-iso 4388 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-n0 9378 df-z 9455 df-uz 9731 df-dvds 12307 |
| This theorem is referenced by: lgsval 15691 lgsfvalg 15692 gausslemma2dlem6 15754 |
| Copyright terms: Public domain | W3C validator |