ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divgcdcoprmex GIF version

Theorem divgcdcoprmex 11783
Description: Integers divided by gcd are coprime (see ProofWiki "Integers Divided by GCD are Coprime", 11-Jul-2021, https://proofwiki.org/wiki/Integers_Divided_by_GCD_are_Coprime): Any pair of integers, not both zero, can be reduced to a pair of coprime ones by dividing them by their gcd. (Contributed by AV, 12-Jul-2021.)
Assertion
Ref Expression
divgcdcoprmex ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑀 · 𝑎) ∧ 𝐵 = (𝑀 · 𝑏) ∧ (𝑎 gcd 𝑏) = 1))
Distinct variable groups:   𝐴,𝑎,𝑏   𝐵,𝑎,𝑏   𝑀,𝑎,𝑏

Proof of Theorem divgcdcoprmex
StepHypRef Expression
1 simpl 108 . . . . 5 ((𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℤ)
21anim2i 339 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))
3 zeqzmulgcd 11659 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∃𝑎 ∈ ℤ 𝐴 = (𝑎 · (𝐴 gcd 𝐵)))
42, 3syl 14 . . 3 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → ∃𝑎 ∈ ℤ 𝐴 = (𝑎 · (𝐴 gcd 𝐵)))
543adant3 1001 . 2 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → ∃𝑎 ∈ ℤ 𝐴 = (𝑎 · (𝐴 gcd 𝐵)))
6 zeqzmulgcd 11659 . . . . 5 ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) → ∃𝑏 ∈ ℤ 𝐵 = (𝑏 · (𝐵 gcd 𝐴)))
76adantlr 468 . . . 4 (((𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝐴 ∈ ℤ) → ∃𝑏 ∈ ℤ 𝐵 = (𝑏 · (𝐵 gcd 𝐴)))
87ancoms 266 . . 3 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → ∃𝑏 ∈ ℤ 𝐵 = (𝑏 · (𝐵 gcd 𝐴)))
983adant3 1001 . 2 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → ∃𝑏 ∈ ℤ 𝐵 = (𝑏 · (𝐵 gcd 𝐴)))
10 reeanv 2600 . . 3 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴))) ↔ (∃𝑎 ∈ ℤ 𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ ∃𝑏 ∈ ℤ 𝐵 = (𝑏 · (𝐵 gcd 𝐴))))
11 zcn 9059 . . . . . . . . . . . 12 (𝑎 ∈ ℤ → 𝑎 ∈ ℂ)
1211adantl 275 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) → 𝑎 ∈ ℂ)
13 gcdcl 11655 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℕ0)
142, 13syl 14 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝐴 gcd 𝐵) ∈ ℕ0)
1514nn0cnd 9032 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝐴 gcd 𝐵) ∈ ℂ)
16153adant3 1001 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (𝐴 gcd 𝐵) ∈ ℂ)
1716adantr 274 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℂ)
1812, 17mulcomd 7787 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) → (𝑎 · (𝐴 gcd 𝐵)) = ((𝐴 gcd 𝐵) · 𝑎))
19 simp3 983 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → 𝑀 = (𝐴 gcd 𝐵))
2019eqcomd 2145 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (𝐴 gcd 𝐵) = 𝑀)
2120oveq1d 5789 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → ((𝐴 gcd 𝐵) · 𝑎) = (𝑀 · 𝑎))
2221adantr 274 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) → ((𝐴 gcd 𝐵) · 𝑎) = (𝑀 · 𝑎))
2318, 22eqtrd 2172 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) → (𝑎 · (𝐴 gcd 𝐵)) = (𝑀 · 𝑎))
2423ad2antrr 479 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴)))) → (𝑎 · (𝐴 gcd 𝐵)) = (𝑀 · 𝑎))
25 eqeq1 2146 . . . . . . . . . 10 (𝐴 = (𝑎 · (𝐴 gcd 𝐵)) → (𝐴 = (𝑀 · 𝑎) ↔ (𝑎 · (𝐴 gcd 𝐵)) = (𝑀 · 𝑎)))
2625adantr 274 . . . . . . . . 9 ((𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴))) → (𝐴 = (𝑀 · 𝑎) ↔ (𝑎 · (𝐴 gcd 𝐵)) = (𝑀 · 𝑎)))
2726adantl 275 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴)))) → (𝐴 = (𝑀 · 𝑎) ↔ (𝑎 · (𝐴 gcd 𝐵)) = (𝑀 · 𝑎)))
2824, 27mpbird 166 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴)))) → 𝐴 = (𝑀 · 𝑎))
29 simpr 109 . . . . . . . 8 ((𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴))) → 𝐵 = (𝑏 · (𝐵 gcd 𝐴)))
302ancomd 265 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ))
31 gcdcom 11662 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐵 gcd 𝐴) = (𝐴 gcd 𝐵))
3230, 31syl 14 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝐵 gcd 𝐴) = (𝐴 gcd 𝐵))
33323adant3 1001 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (𝐵 gcd 𝐴) = (𝐴 gcd 𝐵))
3433oveq2d 5790 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (𝑏 · (𝐵 gcd 𝐴)) = (𝑏 · (𝐴 gcd 𝐵)))
3534adantr 274 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑏 ∈ ℤ) → (𝑏 · (𝐵 gcd 𝐴)) = (𝑏 · (𝐴 gcd 𝐵)))
36 zcn 9059 . . . . . . . . . . . 12 (𝑏 ∈ ℤ → 𝑏 ∈ ℂ)
3736adantl 275 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑏 ∈ ℤ) → 𝑏 ∈ ℂ)
38143adant3 1001 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (𝐴 gcd 𝐵) ∈ ℕ0)
3938adantr 274 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑏 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℕ0)
4039nn0cnd 9032 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑏 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℂ)
4137, 40mulcomd 7787 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑏 ∈ ℤ) → (𝑏 · (𝐴 gcd 𝐵)) = ((𝐴 gcd 𝐵) · 𝑏))
4220adantr 274 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑏 ∈ ℤ) → (𝐴 gcd 𝐵) = 𝑀)
4342oveq1d 5789 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑏 ∈ ℤ) → ((𝐴 gcd 𝐵) · 𝑏) = (𝑀 · 𝑏))
4435, 41, 433eqtrd 2176 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑏 ∈ ℤ) → (𝑏 · (𝐵 gcd 𝐴)) = (𝑀 · 𝑏))
4544adantlr 468 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → (𝑏 · (𝐵 gcd 𝐴)) = (𝑀 · 𝑏))
4629, 45sylan9eqr 2194 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴)))) → 𝐵 = (𝑀 · 𝑏))
47 zcn 9059 . . . . . . . . . . . . . 14 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
48473ad2ant1 1002 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → 𝐴 ∈ ℂ)
4948ad2antrr 479 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → 𝐴 ∈ ℂ)
5012adantr 274 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → 𝑎 ∈ ℂ)
51 simp1 981 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → 𝐴 ∈ ℤ)
5213ad2ant2 1003 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → 𝐵 ∈ ℤ)
5351, 52gcdcld 11657 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (𝐴 gcd 𝐵) ∈ ℕ0)
5453nn0cnd 9032 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (𝐴 gcd 𝐵) ∈ ℂ)
5554ad2antrr 479 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℂ)
56 gcdeq0 11665 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
57 simpr 109 . . . . . . . . . . . . . . . . . 18 ((𝐴 = 0 ∧ 𝐵 = 0) → 𝐵 = 0)
5856, 57syl6bi 162 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 0 → 𝐵 = 0))
5958necon3d 2352 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 ≠ 0 → (𝐴 gcd 𝐵) ≠ 0))
6059impr 376 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝐴 gcd 𝐵) ≠ 0)
61603adant3 1001 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (𝐴 gcd 𝐵) ≠ 0)
6261ad2antrr 479 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → (𝐴 gcd 𝐵) ≠ 0)
6338ad2antrr 479 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℕ0)
6463nn0zd 9171 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℤ)
65 0zd 9066 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → 0 ∈ ℤ)
66 zapne 9125 . . . . . . . . . . . . . 14 (((𝐴 gcd 𝐵) ∈ ℤ ∧ 0 ∈ ℤ) → ((𝐴 gcd 𝐵) # 0 ↔ (𝐴 gcd 𝐵) ≠ 0))
6764, 65, 66syl2anc 408 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → ((𝐴 gcd 𝐵) # 0 ↔ (𝐴 gcd 𝐵) ≠ 0))
6862, 67mpbird 166 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → (𝐴 gcd 𝐵) # 0)
6949, 50, 55, 68divmulap3d 8585 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → ((𝐴 / (𝐴 gcd 𝐵)) = 𝑎𝐴 = (𝑎 · (𝐴 gcd 𝐵))))
7069bicomd 140 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → (𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ↔ (𝐴 / (𝐴 gcd 𝐵)) = 𝑎))
71 zcn 9059 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
7271adantr 274 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℂ)
73723ad2ant2 1003 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → 𝐵 ∈ ℂ)
7473ad2antrr 479 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → 𝐵 ∈ ℂ)
7536adantl 275 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → 𝑏 ∈ ℂ)
7674, 75, 55, 68divmulap3d 8585 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → ((𝐵 / (𝐴 gcd 𝐵)) = 𝑏𝐵 = (𝑏 · (𝐴 gcd 𝐵))))
7723adant3 1001 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))
78 gcdcom 11662 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) = (𝐵 gcd 𝐴))
7977, 78syl 14 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (𝐴 gcd 𝐵) = (𝐵 gcd 𝐴))
8079ad2antrr 479 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → (𝐴 gcd 𝐵) = (𝐵 gcd 𝐴))
8180oveq2d 5790 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → (𝑏 · (𝐴 gcd 𝐵)) = (𝑏 · (𝐵 gcd 𝐴)))
8281eqeq2d 2151 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → (𝐵 = (𝑏 · (𝐴 gcd 𝐵)) ↔ 𝐵 = (𝑏 · (𝐵 gcd 𝐴))))
8376, 82bitr2d 188 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → (𝐵 = (𝑏 · (𝐵 gcd 𝐴)) ↔ (𝐵 / (𝐴 gcd 𝐵)) = 𝑏))
8470, 83anbi12d 464 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → ((𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴))) ↔ ((𝐴 / (𝐴 gcd 𝐵)) = 𝑎 ∧ (𝐵 / (𝐴 gcd 𝐵)) = 𝑏)))
85 3anass 966 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ↔ (𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)))
8685biimpri 132 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0))
87863adant3 1001 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0))
88 divgcdcoprm0 11782 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1)
8987, 88syl 14 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1)
90 oveq12 5783 . . . . . . . . . . . 12 (((𝐴 / (𝐴 gcd 𝐵)) = 𝑎 ∧ (𝐵 / (𝐴 gcd 𝐵)) = 𝑏) → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = (𝑎 gcd 𝑏))
9190eqeq1d 2148 . . . . . . . . . . 11 (((𝐴 / (𝐴 gcd 𝐵)) = 𝑎 ∧ (𝐵 / (𝐴 gcd 𝐵)) = 𝑏) → (((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1 ↔ (𝑎 gcd 𝑏) = 1))
9289, 91syl5ibcom 154 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (((𝐴 / (𝐴 gcd 𝐵)) = 𝑎 ∧ (𝐵 / (𝐴 gcd 𝐵)) = 𝑏) → (𝑎 gcd 𝑏) = 1))
9392ad2antrr 479 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → (((𝐴 / (𝐴 gcd 𝐵)) = 𝑎 ∧ (𝐵 / (𝐴 gcd 𝐵)) = 𝑏) → (𝑎 gcd 𝑏) = 1))
9484, 93sylbid 149 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → ((𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴))) → (𝑎 gcd 𝑏) = 1))
9594imp 123 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴)))) → (𝑎 gcd 𝑏) = 1)
9628, 46, 953jca 1161 . . . . . 6 (((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴)))) → (𝐴 = (𝑀 · 𝑎) ∧ 𝐵 = (𝑀 · 𝑏) ∧ (𝑎 gcd 𝑏) = 1))
9796ex 114 . . . . 5 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → ((𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴))) → (𝐴 = (𝑀 · 𝑎) ∧ 𝐵 = (𝑀 · 𝑏) ∧ (𝑎 gcd 𝑏) = 1)))
9897reximdva 2534 . . . 4 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) → (∃𝑏 ∈ ℤ (𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴))) → ∃𝑏 ∈ ℤ (𝐴 = (𝑀 · 𝑎) ∧ 𝐵 = (𝑀 · 𝑏) ∧ (𝑎 gcd 𝑏) = 1)))
9998reximdva 2534 . . 3 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴))) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑀 · 𝑎) ∧ 𝐵 = (𝑀 · 𝑏) ∧ (𝑎 gcd 𝑏) = 1)))
10010, 99syl5bir 152 . 2 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → ((∃𝑎 ∈ ℤ 𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ ∃𝑏 ∈ ℤ 𝐵 = (𝑏 · (𝐵 gcd 𝐴))) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑀 · 𝑎) ∧ 𝐵 = (𝑀 · 𝑏) ∧ (𝑎 gcd 𝑏) = 1)))
1015, 9, 100mp2and 429 1 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑀 · 𝑎) ∧ 𝐵 = (𝑀 · 𝑏) ∧ (𝑎 gcd 𝑏) = 1))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 962   = wceq 1331  wcel 1480  wne 2308  wrex 2417   class class class wbr 3929  (class class class)co 5774  cc 7618  0cc0 7620  1c1 7621   · cmul 7625   # cap 8343   / cdiv 8432  0cn0 8977  cz 9054   gcd cgcd 11635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-sup 6871  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-fz 9791  df-fzo 9920  df-fl 10043  df-mod 10096  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-dvds 11494  df-gcd 11636
This theorem is referenced by:  cncongr1  11784
  Copyright terms: Public domain W3C validator