ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divgcdcoprmex GIF version

Theorem divgcdcoprmex 12122
Description: Integers divided by gcd are coprime (see ProofWiki "Integers Divided by GCD are Coprime", 11-Jul-2021, https://proofwiki.org/wiki/Integers_Divided_by_GCD_are_Coprime): Any pair of integers, not both zero, can be reduced to a pair of coprime ones by dividing them by their gcd. (Contributed by AV, 12-Jul-2021.)
Assertion
Ref Expression
divgcdcoprmex ((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โ†’ โˆƒ๐‘Ž โˆˆ โ„ค โˆƒ๐‘ โˆˆ โ„ค (๐ด = (๐‘€ ยท ๐‘Ž) โˆง ๐ต = (๐‘€ ยท ๐‘) โˆง (๐‘Ž gcd ๐‘) = 1))
Distinct variable groups:   ๐ด,๐‘Ž,๐‘   ๐ต,๐‘Ž,๐‘   ๐‘€,๐‘Ž,๐‘

Proof of Theorem divgcdcoprmex
StepHypRef Expression
1 simpl 109 . . . . 5 ((๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โ†’ ๐ต โˆˆ โ„ค)
21anim2i 342 . . . 4 ((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0)) โ†’ (๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค))
3 zeqzmulgcd 11991 . . . 4 ((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โ†’ โˆƒ๐‘Ž โˆˆ โ„ค ๐ด = (๐‘Ž ยท (๐ด gcd ๐ต)))
42, 3syl 14 . . 3 ((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0)) โ†’ โˆƒ๐‘Ž โˆˆ โ„ค ๐ด = (๐‘Ž ยท (๐ด gcd ๐ต)))
543adant3 1019 . 2 ((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โ†’ โˆƒ๐‘Ž โˆˆ โ„ค ๐ด = (๐‘Ž ยท (๐ด gcd ๐ต)))
6 zeqzmulgcd 11991 . . . . 5 ((๐ต โˆˆ โ„ค โˆง ๐ด โˆˆ โ„ค) โ†’ โˆƒ๐‘ โˆˆ โ„ค ๐ต = (๐‘ ยท (๐ต gcd ๐ด)))
76adantlr 477 . . . 4 (((๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐ด โˆˆ โ„ค) โ†’ โˆƒ๐‘ โˆˆ โ„ค ๐ต = (๐‘ ยท (๐ต gcd ๐ด)))
87ancoms 268 . . 3 ((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0)) โ†’ โˆƒ๐‘ โˆˆ โ„ค ๐ต = (๐‘ ยท (๐ต gcd ๐ด)))
983adant3 1019 . 2 ((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โ†’ โˆƒ๐‘ โˆˆ โ„ค ๐ต = (๐‘ ยท (๐ต gcd ๐ด)))
10 reeanv 2660 . . 3 (โˆƒ๐‘Ž โˆˆ โ„ค โˆƒ๐‘ โˆˆ โ„ค (๐ด = (๐‘Ž ยท (๐ด gcd ๐ต)) โˆง ๐ต = (๐‘ ยท (๐ต gcd ๐ด))) โ†” (โˆƒ๐‘Ž โˆˆ โ„ค ๐ด = (๐‘Ž ยท (๐ด gcd ๐ต)) โˆง โˆƒ๐‘ โˆˆ โ„ค ๐ต = (๐‘ ยท (๐ต gcd ๐ด))))
11 zcn 9278 . . . . . . . . . . . 12 (๐‘Ž โˆˆ โ„ค โ†’ ๐‘Ž โˆˆ โ„‚)
1211adantl 277 . . . . . . . . . . 11 (((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โˆง ๐‘Ž โˆˆ โ„ค) โ†’ ๐‘Ž โˆˆ โ„‚)
13 gcdcl 11987 . . . . . . . . . . . . . . 15 ((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โ†’ (๐ด gcd ๐ต) โˆˆ โ„•0)
142, 13syl 14 . . . . . . . . . . . . . 14 ((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0)) โ†’ (๐ด gcd ๐ต) โˆˆ โ„•0)
1514nn0cnd 9251 . . . . . . . . . . . . 13 ((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0)) โ†’ (๐ด gcd ๐ต) โˆˆ โ„‚)
16153adant3 1019 . . . . . . . . . . . 12 ((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โ†’ (๐ด gcd ๐ต) โˆˆ โ„‚)
1716adantr 276 . . . . . . . . . . 11 (((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โˆง ๐‘Ž โˆˆ โ„ค) โ†’ (๐ด gcd ๐ต) โˆˆ โ„‚)
1812, 17mulcomd 7999 . . . . . . . . . 10 (((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โˆง ๐‘Ž โˆˆ โ„ค) โ†’ (๐‘Ž ยท (๐ด gcd ๐ต)) = ((๐ด gcd ๐ต) ยท ๐‘Ž))
19 simp3 1001 . . . . . . . . . . . . 13 ((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โ†’ ๐‘€ = (๐ด gcd ๐ต))
2019eqcomd 2195 . . . . . . . . . . . 12 ((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โ†’ (๐ด gcd ๐ต) = ๐‘€)
2120oveq1d 5907 . . . . . . . . . . 11 ((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โ†’ ((๐ด gcd ๐ต) ยท ๐‘Ž) = (๐‘€ ยท ๐‘Ž))
2221adantr 276 . . . . . . . . . 10 (((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โˆง ๐‘Ž โˆˆ โ„ค) โ†’ ((๐ด gcd ๐ต) ยท ๐‘Ž) = (๐‘€ ยท ๐‘Ž))
2318, 22eqtrd 2222 . . . . . . . . 9 (((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โˆง ๐‘Ž โˆˆ โ„ค) โ†’ (๐‘Ž ยท (๐ด gcd ๐ต)) = (๐‘€ ยท ๐‘Ž))
2423ad2antrr 488 . . . . . . . 8 (((((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โˆง ๐‘Ž โˆˆ โ„ค) โˆง ๐‘ โˆˆ โ„ค) โˆง (๐ด = (๐‘Ž ยท (๐ด gcd ๐ต)) โˆง ๐ต = (๐‘ ยท (๐ต gcd ๐ด)))) โ†’ (๐‘Ž ยท (๐ด gcd ๐ต)) = (๐‘€ ยท ๐‘Ž))
25 eqeq1 2196 . . . . . . . . . 10 (๐ด = (๐‘Ž ยท (๐ด gcd ๐ต)) โ†’ (๐ด = (๐‘€ ยท ๐‘Ž) โ†” (๐‘Ž ยท (๐ด gcd ๐ต)) = (๐‘€ ยท ๐‘Ž)))
2625adantr 276 . . . . . . . . 9 ((๐ด = (๐‘Ž ยท (๐ด gcd ๐ต)) โˆง ๐ต = (๐‘ ยท (๐ต gcd ๐ด))) โ†’ (๐ด = (๐‘€ ยท ๐‘Ž) โ†” (๐‘Ž ยท (๐ด gcd ๐ต)) = (๐‘€ ยท ๐‘Ž)))
2726adantl 277 . . . . . . . 8 (((((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โˆง ๐‘Ž โˆˆ โ„ค) โˆง ๐‘ โˆˆ โ„ค) โˆง (๐ด = (๐‘Ž ยท (๐ด gcd ๐ต)) โˆง ๐ต = (๐‘ ยท (๐ต gcd ๐ด)))) โ†’ (๐ด = (๐‘€ ยท ๐‘Ž) โ†” (๐‘Ž ยท (๐ด gcd ๐ต)) = (๐‘€ ยท ๐‘Ž)))
2824, 27mpbird 167 . . . . . . 7 (((((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โˆง ๐‘Ž โˆˆ โ„ค) โˆง ๐‘ โˆˆ โ„ค) โˆง (๐ด = (๐‘Ž ยท (๐ด gcd ๐ต)) โˆง ๐ต = (๐‘ ยท (๐ต gcd ๐ด)))) โ†’ ๐ด = (๐‘€ ยท ๐‘Ž))
29 simpr 110 . . . . . . . 8 ((๐ด = (๐‘Ž ยท (๐ด gcd ๐ต)) โˆง ๐ต = (๐‘ ยท (๐ต gcd ๐ด))) โ†’ ๐ต = (๐‘ ยท (๐ต gcd ๐ด)))
302ancomd 267 . . . . . . . . . . . . . 14 ((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0)) โ†’ (๐ต โˆˆ โ„ค โˆง ๐ด โˆˆ โ„ค))
31 gcdcom 11994 . . . . . . . . . . . . . 14 ((๐ต โˆˆ โ„ค โˆง ๐ด โˆˆ โ„ค) โ†’ (๐ต gcd ๐ด) = (๐ด gcd ๐ต))
3230, 31syl 14 . . . . . . . . . . . . 13 ((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0)) โ†’ (๐ต gcd ๐ด) = (๐ด gcd ๐ต))
33323adant3 1019 . . . . . . . . . . . 12 ((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โ†’ (๐ต gcd ๐ด) = (๐ด gcd ๐ต))
3433oveq2d 5908 . . . . . . . . . . 11 ((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โ†’ (๐‘ ยท (๐ต gcd ๐ด)) = (๐‘ ยท (๐ด gcd ๐ต)))
3534adantr 276 . . . . . . . . . 10 (((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โˆง ๐‘ โˆˆ โ„ค) โ†’ (๐‘ ยท (๐ต gcd ๐ด)) = (๐‘ ยท (๐ด gcd ๐ต)))
36 zcn 9278 . . . . . . . . . . . 12 (๐‘ โˆˆ โ„ค โ†’ ๐‘ โˆˆ โ„‚)
3736adantl 277 . . . . . . . . . . 11 (((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โˆง ๐‘ โˆˆ โ„ค) โ†’ ๐‘ โˆˆ โ„‚)
38143adant3 1019 . . . . . . . . . . . . 13 ((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โ†’ (๐ด gcd ๐ต) โˆˆ โ„•0)
3938adantr 276 . . . . . . . . . . . 12 (((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โˆง ๐‘ โˆˆ โ„ค) โ†’ (๐ด gcd ๐ต) โˆˆ โ„•0)
4039nn0cnd 9251 . . . . . . . . . . 11 (((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โˆง ๐‘ โˆˆ โ„ค) โ†’ (๐ด gcd ๐ต) โˆˆ โ„‚)
4137, 40mulcomd 7999 . . . . . . . . . 10 (((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โˆง ๐‘ โˆˆ โ„ค) โ†’ (๐‘ ยท (๐ด gcd ๐ต)) = ((๐ด gcd ๐ต) ยท ๐‘))
4220adantr 276 . . . . . . . . . . 11 (((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โˆง ๐‘ โˆˆ โ„ค) โ†’ (๐ด gcd ๐ต) = ๐‘€)
4342oveq1d 5907 . . . . . . . . . 10 (((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โˆง ๐‘ โˆˆ โ„ค) โ†’ ((๐ด gcd ๐ต) ยท ๐‘) = (๐‘€ ยท ๐‘))
4435, 41, 433eqtrd 2226 . . . . . . . . 9 (((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โˆง ๐‘ โˆˆ โ„ค) โ†’ (๐‘ ยท (๐ต gcd ๐ด)) = (๐‘€ ยท ๐‘))
4544adantlr 477 . . . . . . . 8 ((((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โˆง ๐‘Ž โˆˆ โ„ค) โˆง ๐‘ โˆˆ โ„ค) โ†’ (๐‘ ยท (๐ต gcd ๐ด)) = (๐‘€ ยท ๐‘))
4629, 45sylan9eqr 2244 . . . . . . 7 (((((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โˆง ๐‘Ž โˆˆ โ„ค) โˆง ๐‘ โˆˆ โ„ค) โˆง (๐ด = (๐‘Ž ยท (๐ด gcd ๐ต)) โˆง ๐ต = (๐‘ ยท (๐ต gcd ๐ด)))) โ†’ ๐ต = (๐‘€ ยท ๐‘))
47 zcn 9278 . . . . . . . . . . . . . 14 (๐ด โˆˆ โ„ค โ†’ ๐ด โˆˆ โ„‚)
48473ad2ant1 1020 . . . . . . . . . . . . 13 ((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โ†’ ๐ด โˆˆ โ„‚)
4948ad2antrr 488 . . . . . . . . . . . 12 ((((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โˆง ๐‘Ž โˆˆ โ„ค) โˆง ๐‘ โˆˆ โ„ค) โ†’ ๐ด โˆˆ โ„‚)
5012adantr 276 . . . . . . . . . . . 12 ((((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โˆง ๐‘Ž โˆˆ โ„ค) โˆง ๐‘ โˆˆ โ„ค) โ†’ ๐‘Ž โˆˆ โ„‚)
51 simp1 999 . . . . . . . . . . . . . . 15 ((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โ†’ ๐ด โˆˆ โ„ค)
5213ad2ant2 1021 . . . . . . . . . . . . . . 15 ((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โ†’ ๐ต โˆˆ โ„ค)
5351, 52gcdcld 11989 . . . . . . . . . . . . . 14 ((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โ†’ (๐ด gcd ๐ต) โˆˆ โ„•0)
5453nn0cnd 9251 . . . . . . . . . . . . 13 ((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โ†’ (๐ด gcd ๐ต) โˆˆ โ„‚)
5554ad2antrr 488 . . . . . . . . . . . 12 ((((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โˆง ๐‘Ž โˆˆ โ„ค) โˆง ๐‘ โˆˆ โ„ค) โ†’ (๐ด gcd ๐ต) โˆˆ โ„‚)
56 gcdeq0 11998 . . . . . . . . . . . . . . . . . 18 ((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โ†’ ((๐ด gcd ๐ต) = 0 โ†” (๐ด = 0 โˆง ๐ต = 0)))
57 simpr 110 . . . . . . . . . . . . . . . . . 18 ((๐ด = 0 โˆง ๐ต = 0) โ†’ ๐ต = 0)
5856, 57biimtrdi 163 . . . . . . . . . . . . . . . . 17 ((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โ†’ ((๐ด gcd ๐ต) = 0 โ†’ ๐ต = 0))
5958necon3d 2404 . . . . . . . . . . . . . . . 16 ((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โ†’ (๐ต โ‰  0 โ†’ (๐ด gcd ๐ต) โ‰  0))
6059impr 379 . . . . . . . . . . . . . . 15 ((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0)) โ†’ (๐ด gcd ๐ต) โ‰  0)
61603adant3 1019 . . . . . . . . . . . . . 14 ((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โ†’ (๐ด gcd ๐ต) โ‰  0)
6261ad2antrr 488 . . . . . . . . . . . . 13 ((((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โˆง ๐‘Ž โˆˆ โ„ค) โˆง ๐‘ โˆˆ โ„ค) โ†’ (๐ด gcd ๐ต) โ‰  0)
6338ad2antrr 488 . . . . . . . . . . . . . . 15 ((((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โˆง ๐‘Ž โˆˆ โ„ค) โˆง ๐‘ โˆˆ โ„ค) โ†’ (๐ด gcd ๐ต) โˆˆ โ„•0)
6463nn0zd 9393 . . . . . . . . . . . . . 14 ((((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โˆง ๐‘Ž โˆˆ โ„ค) โˆง ๐‘ โˆˆ โ„ค) โ†’ (๐ด gcd ๐ต) โˆˆ โ„ค)
65 0zd 9285 . . . . . . . . . . . . . 14 ((((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โˆง ๐‘Ž โˆˆ โ„ค) โˆง ๐‘ โˆˆ โ„ค) โ†’ 0 โˆˆ โ„ค)
66 zapne 9347 . . . . . . . . . . . . . 14 (((๐ด gcd ๐ต) โˆˆ โ„ค โˆง 0 โˆˆ โ„ค) โ†’ ((๐ด gcd ๐ต) # 0 โ†” (๐ด gcd ๐ต) โ‰  0))
6764, 65, 66syl2anc 411 . . . . . . . . . . . . 13 ((((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โˆง ๐‘Ž โˆˆ โ„ค) โˆง ๐‘ โˆˆ โ„ค) โ†’ ((๐ด gcd ๐ต) # 0 โ†” (๐ด gcd ๐ต) โ‰  0))
6862, 67mpbird 167 . . . . . . . . . . . 12 ((((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โˆง ๐‘Ž โˆˆ โ„ค) โˆง ๐‘ โˆˆ โ„ค) โ†’ (๐ด gcd ๐ต) # 0)
6949, 50, 55, 68divmulap3d 8802 . . . . . . . . . . 11 ((((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โˆง ๐‘Ž โˆˆ โ„ค) โˆง ๐‘ โˆˆ โ„ค) โ†’ ((๐ด / (๐ด gcd ๐ต)) = ๐‘Ž โ†” ๐ด = (๐‘Ž ยท (๐ด gcd ๐ต))))
7069bicomd 141 . . . . . . . . . 10 ((((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โˆง ๐‘Ž โˆˆ โ„ค) โˆง ๐‘ โˆˆ โ„ค) โ†’ (๐ด = (๐‘Ž ยท (๐ด gcd ๐ต)) โ†” (๐ด / (๐ด gcd ๐ต)) = ๐‘Ž))
71 zcn 9278 . . . . . . . . . . . . . . 15 (๐ต โˆˆ โ„ค โ†’ ๐ต โˆˆ โ„‚)
7271adantr 276 . . . . . . . . . . . . . 14 ((๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โ†’ ๐ต โˆˆ โ„‚)
73723ad2ant2 1021 . . . . . . . . . . . . 13 ((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โ†’ ๐ต โˆˆ โ„‚)
7473ad2antrr 488 . . . . . . . . . . . 12 ((((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โˆง ๐‘Ž โˆˆ โ„ค) โˆง ๐‘ โˆˆ โ„ค) โ†’ ๐ต โˆˆ โ„‚)
7536adantl 277 . . . . . . . . . . . 12 ((((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โˆง ๐‘Ž โˆˆ โ„ค) โˆง ๐‘ โˆˆ โ„ค) โ†’ ๐‘ โˆˆ โ„‚)
7674, 75, 55, 68divmulap3d 8802 . . . . . . . . . . 11 ((((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โˆง ๐‘Ž โˆˆ โ„ค) โˆง ๐‘ โˆˆ โ„ค) โ†’ ((๐ต / (๐ด gcd ๐ต)) = ๐‘ โ†” ๐ต = (๐‘ ยท (๐ด gcd ๐ต))))
7723adant3 1019 . . . . . . . . . . . . . . 15 ((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โ†’ (๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค))
78 gcdcom 11994 . . . . . . . . . . . . . . 15 ((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โ†’ (๐ด gcd ๐ต) = (๐ต gcd ๐ด))
7977, 78syl 14 . . . . . . . . . . . . . 14 ((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โ†’ (๐ด gcd ๐ต) = (๐ต gcd ๐ด))
8079ad2antrr 488 . . . . . . . . . . . . 13 ((((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โˆง ๐‘Ž โˆˆ โ„ค) โˆง ๐‘ โˆˆ โ„ค) โ†’ (๐ด gcd ๐ต) = (๐ต gcd ๐ด))
8180oveq2d 5908 . . . . . . . . . . . 12 ((((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โˆง ๐‘Ž โˆˆ โ„ค) โˆง ๐‘ โˆˆ โ„ค) โ†’ (๐‘ ยท (๐ด gcd ๐ต)) = (๐‘ ยท (๐ต gcd ๐ด)))
8281eqeq2d 2201 . . . . . . . . . . 11 ((((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โˆง ๐‘Ž โˆˆ โ„ค) โˆง ๐‘ โˆˆ โ„ค) โ†’ (๐ต = (๐‘ ยท (๐ด gcd ๐ต)) โ†” ๐ต = (๐‘ ยท (๐ต gcd ๐ด))))
8376, 82bitr2d 189 . . . . . . . . . 10 ((((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โˆง ๐‘Ž โˆˆ โ„ค) โˆง ๐‘ โˆˆ โ„ค) โ†’ (๐ต = (๐‘ ยท (๐ต gcd ๐ด)) โ†” (๐ต / (๐ด gcd ๐ต)) = ๐‘))
8470, 83anbi12d 473 . . . . . . . . 9 ((((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โˆง ๐‘Ž โˆˆ โ„ค) โˆง ๐‘ โˆˆ โ„ค) โ†’ ((๐ด = (๐‘Ž ยท (๐ด gcd ๐ต)) โˆง ๐ต = (๐‘ ยท (๐ต gcd ๐ด))) โ†” ((๐ด / (๐ด gcd ๐ต)) = ๐‘Ž โˆง (๐ต / (๐ด gcd ๐ต)) = ๐‘)))
85 3anass 984 . . . . . . . . . . . . . 14 ((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โ†” (๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0)))
8685biimpri 133 . . . . . . . . . . . . 13 ((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0)) โ†’ (๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0))
87863adant3 1019 . . . . . . . . . . . 12 ((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โ†’ (๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0))
88 divgcdcoprm0 12121 . . . . . . . . . . . 12 ((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โ†’ ((๐ด / (๐ด gcd ๐ต)) gcd (๐ต / (๐ด gcd ๐ต))) = 1)
8987, 88syl 14 . . . . . . . . . . 11 ((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โ†’ ((๐ด / (๐ด gcd ๐ต)) gcd (๐ต / (๐ด gcd ๐ต))) = 1)
90 oveq12 5901 . . . . . . . . . . . 12 (((๐ด / (๐ด gcd ๐ต)) = ๐‘Ž โˆง (๐ต / (๐ด gcd ๐ต)) = ๐‘) โ†’ ((๐ด / (๐ด gcd ๐ต)) gcd (๐ต / (๐ด gcd ๐ต))) = (๐‘Ž gcd ๐‘))
9190eqeq1d 2198 . . . . . . . . . . 11 (((๐ด / (๐ด gcd ๐ต)) = ๐‘Ž โˆง (๐ต / (๐ด gcd ๐ต)) = ๐‘) โ†’ (((๐ด / (๐ด gcd ๐ต)) gcd (๐ต / (๐ด gcd ๐ต))) = 1 โ†” (๐‘Ž gcd ๐‘) = 1))
9289, 91syl5ibcom 155 . . . . . . . . . 10 ((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โ†’ (((๐ด / (๐ด gcd ๐ต)) = ๐‘Ž โˆง (๐ต / (๐ด gcd ๐ต)) = ๐‘) โ†’ (๐‘Ž gcd ๐‘) = 1))
9392ad2antrr 488 . . . . . . . . 9 ((((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โˆง ๐‘Ž โˆˆ โ„ค) โˆง ๐‘ โˆˆ โ„ค) โ†’ (((๐ด / (๐ด gcd ๐ต)) = ๐‘Ž โˆง (๐ต / (๐ด gcd ๐ต)) = ๐‘) โ†’ (๐‘Ž gcd ๐‘) = 1))
9484, 93sylbid 150 . . . . . . . 8 ((((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โˆง ๐‘Ž โˆˆ โ„ค) โˆง ๐‘ โˆˆ โ„ค) โ†’ ((๐ด = (๐‘Ž ยท (๐ด gcd ๐ต)) โˆง ๐ต = (๐‘ ยท (๐ต gcd ๐ด))) โ†’ (๐‘Ž gcd ๐‘) = 1))
9594imp 124 . . . . . . 7 (((((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โˆง ๐‘Ž โˆˆ โ„ค) โˆง ๐‘ โˆˆ โ„ค) โˆง (๐ด = (๐‘Ž ยท (๐ด gcd ๐ต)) โˆง ๐ต = (๐‘ ยท (๐ต gcd ๐ด)))) โ†’ (๐‘Ž gcd ๐‘) = 1)
9628, 46, 953jca 1179 . . . . . 6 (((((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โˆง ๐‘Ž โˆˆ โ„ค) โˆง ๐‘ โˆˆ โ„ค) โˆง (๐ด = (๐‘Ž ยท (๐ด gcd ๐ต)) โˆง ๐ต = (๐‘ ยท (๐ต gcd ๐ด)))) โ†’ (๐ด = (๐‘€ ยท ๐‘Ž) โˆง ๐ต = (๐‘€ ยท ๐‘) โˆง (๐‘Ž gcd ๐‘) = 1))
9796ex 115 . . . . 5 ((((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โˆง ๐‘Ž โˆˆ โ„ค) โˆง ๐‘ โˆˆ โ„ค) โ†’ ((๐ด = (๐‘Ž ยท (๐ด gcd ๐ต)) โˆง ๐ต = (๐‘ ยท (๐ต gcd ๐ด))) โ†’ (๐ด = (๐‘€ ยท ๐‘Ž) โˆง ๐ต = (๐‘€ ยท ๐‘) โˆง (๐‘Ž gcd ๐‘) = 1)))
9897reximdva 2592 . . . 4 (((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โˆง ๐‘Ž โˆˆ โ„ค) โ†’ (โˆƒ๐‘ โˆˆ โ„ค (๐ด = (๐‘Ž ยท (๐ด gcd ๐ต)) โˆง ๐ต = (๐‘ ยท (๐ต gcd ๐ด))) โ†’ โˆƒ๐‘ โˆˆ โ„ค (๐ด = (๐‘€ ยท ๐‘Ž) โˆง ๐ต = (๐‘€ ยท ๐‘) โˆง (๐‘Ž gcd ๐‘) = 1)))
9998reximdva 2592 . . 3 ((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โ†’ (โˆƒ๐‘Ž โˆˆ โ„ค โˆƒ๐‘ โˆˆ โ„ค (๐ด = (๐‘Ž ยท (๐ด gcd ๐ต)) โˆง ๐ต = (๐‘ ยท (๐ต gcd ๐ด))) โ†’ โˆƒ๐‘Ž โˆˆ โ„ค โˆƒ๐‘ โˆˆ โ„ค (๐ด = (๐‘€ ยท ๐‘Ž) โˆง ๐ต = (๐‘€ ยท ๐‘) โˆง (๐‘Ž gcd ๐‘) = 1)))
10010, 99biimtrrid 153 . 2 ((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โ†’ ((โˆƒ๐‘Ž โˆˆ โ„ค ๐ด = (๐‘Ž ยท (๐ด gcd ๐ต)) โˆง โˆƒ๐‘ โˆˆ โ„ค ๐ต = (๐‘ ยท (๐ต gcd ๐ด))) โ†’ โˆƒ๐‘Ž โˆˆ โ„ค โˆƒ๐‘ โˆˆ โ„ค (๐ด = (๐‘€ ยท ๐‘Ž) โˆง ๐ต = (๐‘€ ยท ๐‘) โˆง (๐‘Ž gcd ๐‘) = 1)))
1015, 9, 100mp2and 433 1 ((๐ด โˆˆ โ„ค โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0) โˆง ๐‘€ = (๐ด gcd ๐ต)) โ†’ โˆƒ๐‘Ž โˆˆ โ„ค โˆƒ๐‘ โˆˆ โ„ค (๐ด = (๐‘€ ยท ๐‘Ž) โˆง ๐ต = (๐‘€ ยท ๐‘) โˆง (๐‘Ž gcd ๐‘) = 1))
Colors of variables: wff set class
Syntax hints:   โ†’ wi 4   โˆง wa 104   โ†” wb 105   โˆง w3a 980   = wceq 1364   โˆˆ wcel 2160   โ‰  wne 2360  โˆƒwrex 2469   class class class wbr 4018  (class class class)co 5892  โ„‚cc 7829  0cc0 7831  1c1 7832   ยท cmul 7836   # cap 8558   / cdiv 8649  โ„•0cn0 9196  โ„คcz 9273   gcd cgcd 11963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-iinf 4602  ax-cnex 7922  ax-resscn 7923  ax-1cn 7924  ax-1re 7925  ax-icn 7926  ax-addcl 7927  ax-addrcl 7928  ax-mulcl 7929  ax-mulrcl 7930  ax-addcom 7931  ax-mulcom 7932  ax-addass 7933  ax-mulass 7934  ax-distr 7935  ax-i2m1 7936  ax-0lt1 7937  ax-1rid 7938  ax-0id 7939  ax-rnegex 7940  ax-precex 7941  ax-cnre 7942  ax-pre-ltirr 7943  ax-pre-ltwlin 7944  ax-pre-lttrn 7945  ax-pre-apti 7946  ax-pre-ltadd 7947  ax-pre-mulgt0 7948  ax-pre-mulext 7949  ax-arch 7950  ax-caucvg 7951
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4308  df-po 4311  df-iso 4312  df-iord 4381  df-on 4383  df-ilim 4384  df-suc 4386  df-iom 4605  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5234  df-fn 5235  df-f 5236  df-f1 5237  df-fo 5238  df-f1o 5239  df-fv 5240  df-riota 5848  df-ov 5895  df-oprab 5896  df-mpo 5897  df-1st 6160  df-2nd 6161  df-recs 6325  df-frec 6411  df-sup 7003  df-pnf 8014  df-mnf 8015  df-xr 8016  df-ltxr 8017  df-le 8018  df-sub 8150  df-neg 8151  df-reap 8552  df-ap 8559  df-div 8650  df-inn 8940  df-2 8998  df-3 8999  df-4 9000  df-n0 9197  df-z 9274  df-uz 9549  df-q 9640  df-rp 9674  df-fz 10029  df-fzo 10163  df-fl 10290  df-mod 10343  df-seqfrec 10466  df-exp 10540  df-cj 10871  df-re 10872  df-im 10873  df-rsqrt 11027  df-abs 11028  df-dvds 11815  df-gcd 11964
This theorem is referenced by:  cncongr1  12123
  Copyright terms: Public domain W3C validator