ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0ehalf GIF version

Theorem nn0ehalf 11902
Description: The half of an even nonnegative integer is a nonnegative integer. (Contributed by AV, 22-Jun-2020.) (Revised by AV, 28-Jun-2021.)
Assertion
Ref Expression
nn0ehalf ((𝑁 ∈ ℕ0 ∧ 2 ∥ 𝑁) → (𝑁 / 2) ∈ ℕ0)

Proof of Theorem nn0ehalf
StepHypRef Expression
1 nn0z 9271 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
2 evend2 11888 . . . 4 (𝑁 ∈ ℤ → (2 ∥ 𝑁 ↔ (𝑁 / 2) ∈ ℤ))
31, 2syl 14 . . 3 (𝑁 ∈ ℕ0 → (2 ∥ 𝑁 ↔ (𝑁 / 2) ∈ ℤ))
4 nn0ge0 9199 . . . . . . . 8 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
5 nn0re 9183 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
6 2re 8987 . . . . . . . . . 10 2 ∈ ℝ
76a1i 9 . . . . . . . . 9 (𝑁 ∈ ℕ0 → 2 ∈ ℝ)
8 2pos 9008 . . . . . . . . . 10 0 < 2
98a1i 9 . . . . . . . . 9 (𝑁 ∈ ℕ0 → 0 < 2)
10 ge0div 8826 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 2 ∈ ℝ ∧ 0 < 2) → (0 ≤ 𝑁 ↔ 0 ≤ (𝑁 / 2)))
115, 7, 9, 10syl3anc 1238 . . . . . . . 8 (𝑁 ∈ ℕ0 → (0 ≤ 𝑁 ↔ 0 ≤ (𝑁 / 2)))
124, 11mpbid 147 . . . . . . 7 (𝑁 ∈ ℕ0 → 0 ≤ (𝑁 / 2))
1312anim1i 340 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℤ) → (0 ≤ (𝑁 / 2) ∧ (𝑁 / 2) ∈ ℤ))
1413ancomd 267 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℤ) → ((𝑁 / 2) ∈ ℤ ∧ 0 ≤ (𝑁 / 2)))
15 elnn0z 9264 . . . . 5 ((𝑁 / 2) ∈ ℕ0 ↔ ((𝑁 / 2) ∈ ℤ ∧ 0 ≤ (𝑁 / 2)))
1614, 15sylibr 134 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℤ) → (𝑁 / 2) ∈ ℕ0)
1716ex 115 . . 3 (𝑁 ∈ ℕ0 → ((𝑁 / 2) ∈ ℤ → (𝑁 / 2) ∈ ℕ0))
183, 17sylbid 150 . 2 (𝑁 ∈ ℕ0 → (2 ∥ 𝑁 → (𝑁 / 2) ∈ ℕ0))
1918imp 124 1 ((𝑁 ∈ ℕ0 ∧ 2 ∥ 𝑁) → (𝑁 / 2) ∈ ℕ0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2148   class class class wbr 4003  (class class class)co 5874  cr 7809  0cc0 7810   < clt 7990  cle 7991   / cdiv 8627  2c2 8968  0cn0 9174  cz 9251  cdvds 11789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-mulrcl 7909  ax-addcom 7910  ax-mulcom 7911  ax-addass 7912  ax-mulass 7913  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-1rid 7917  ax-0id 7918  ax-rnegex 7919  ax-precex 7920  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-apti 7925  ax-pre-ltadd 7926  ax-pre-mulgt0 7927  ax-pre-mulext 7928
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-br 4004  df-opab 4065  df-id 4293  df-po 4296  df-iso 4297  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-iota 5178  df-fun 5218  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-pnf 7992  df-mnf 7993  df-xr 7994  df-ltxr 7995  df-le 7996  df-sub 8128  df-neg 8129  df-reap 8530  df-ap 8537  df-div 8628  df-inn 8918  df-2 8976  df-n0 9175  df-z 9252  df-dvds 11790
This theorem is referenced by:  nnehalf  11903
  Copyright terms: Public domain W3C validator