ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sinbnd GIF version

Theorem sinbnd 11795
Description: The sine of a real number lies between -1 and 1. Equation 18 of [Gleason] p. 311. (Contributed by NM, 16-Jan-2006.)
Assertion
Ref Expression
sinbnd (𝐴 ∈ ℝ → (-1 ≤ (sin‘𝐴) ∧ (sin‘𝐴) ≤ 1))

Proof of Theorem sinbnd
StepHypRef Expression
1 recoscl 11764 . . . . . 6 (𝐴 ∈ ℝ → (cos‘𝐴) ∈ ℝ)
21sqge0d 10715 . . . . 5 (𝐴 ∈ ℝ → 0 ≤ ((cos‘𝐴)↑2))
3 resincl 11763 . . . . . . 7 (𝐴 ∈ ℝ → (sin‘𝐴) ∈ ℝ)
43resqcld 10714 . . . . . 6 (𝐴 ∈ ℝ → ((sin‘𝐴)↑2) ∈ ℝ)
51resqcld 10714 . . . . . 6 (𝐴 ∈ ℝ → ((cos‘𝐴)↑2) ∈ ℝ)
64, 5addge01d 8521 . . . . 5 (𝐴 ∈ ℝ → (0 ≤ ((cos‘𝐴)↑2) ↔ ((sin‘𝐴)↑2) ≤ (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2))))
72, 6mpbid 147 . . . 4 (𝐴 ∈ ℝ → ((sin‘𝐴)↑2) ≤ (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)))
8 recn 7975 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
9 sincossq 11791 . . . . . 6 (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1)
108, 9syl 14 . . . . 5 (𝐴 ∈ ℝ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1)
11 sq1 10648 . . . . 5 (1↑2) = 1
1210, 11eqtr4di 2240 . . . 4 (𝐴 ∈ ℝ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = (1↑2))
137, 12breqtrd 4044 . . 3 (𝐴 ∈ ℝ → ((sin‘𝐴)↑2) ≤ (1↑2))
14 1re 7987 . . . . . 6 1 ∈ ℝ
15 0le1 8469 . . . . . 6 0 ≤ 1
16 lenegsq 11139 . . . . . 6 (((sin‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ ∧ 0 ≤ 1) → (((sin‘𝐴) ≤ 1 ∧ -(sin‘𝐴) ≤ 1) ↔ ((sin‘𝐴)↑2) ≤ (1↑2)))
1714, 15, 16mp3an23 1340 . . . . 5 ((sin‘𝐴) ∈ ℝ → (((sin‘𝐴) ≤ 1 ∧ -(sin‘𝐴) ≤ 1) ↔ ((sin‘𝐴)↑2) ≤ (1↑2)))
18 lenegcon1 8454 . . . . . . 7 (((sin‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → (-(sin‘𝐴) ≤ 1 ↔ -1 ≤ (sin‘𝐴)))
1914, 18mpan2 425 . . . . . 6 ((sin‘𝐴) ∈ ℝ → (-(sin‘𝐴) ≤ 1 ↔ -1 ≤ (sin‘𝐴)))
2019anbi2d 464 . . . . 5 ((sin‘𝐴) ∈ ℝ → (((sin‘𝐴) ≤ 1 ∧ -(sin‘𝐴) ≤ 1) ↔ ((sin‘𝐴) ≤ 1 ∧ -1 ≤ (sin‘𝐴))))
2117, 20bitr3d 190 . . . 4 ((sin‘𝐴) ∈ ℝ → (((sin‘𝐴)↑2) ≤ (1↑2) ↔ ((sin‘𝐴) ≤ 1 ∧ -1 ≤ (sin‘𝐴))))
223, 21syl 14 . . 3 (𝐴 ∈ ℝ → (((sin‘𝐴)↑2) ≤ (1↑2) ↔ ((sin‘𝐴) ≤ 1 ∧ -1 ≤ (sin‘𝐴))))
2313, 22mpbid 147 . 2 (𝐴 ∈ ℝ → ((sin‘𝐴) ≤ 1 ∧ -1 ≤ (sin‘𝐴)))
2423ancomd 267 1 (𝐴 ∈ ℝ → (-1 ≤ (sin‘𝐴) ∧ (sin‘𝐴) ≤ 1))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2160   class class class wbr 4018  cfv 5235  (class class class)co 5897  cc 7840  cr 7841  0cc0 7842  1c1 7843   + caddc 7845  cle 8024  -cneg 8160  2c2 9001  cexp 10553  sincsin 11687  cosccos 11688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-mulrcl 7941  ax-addcom 7942  ax-mulcom 7943  ax-addass 7944  ax-mulass 7945  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-1rid 7949  ax-0id 7950  ax-rnegex 7951  ax-precex 7952  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958  ax-pre-mulgt0 7959  ax-pre-mulext 7960  ax-arch 7961  ax-caucvg 7962
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-disj 3996  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-isom 5244  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-recs 6331  df-irdg 6396  df-frec 6417  df-1o 6442  df-oadd 6446  df-er 6560  df-en 6768  df-dom 6769  df-fin 6770  df-sup 7014  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-reap 8563  df-ap 8570  df-div 8661  df-inn 8951  df-2 9009  df-3 9010  df-4 9011  df-n0 9208  df-z 9285  df-uz 9560  df-q 9652  df-rp 9686  df-ico 9926  df-fz 10041  df-fzo 10175  df-seqfrec 10479  df-exp 10554  df-fac 10741  df-bc 10763  df-ihash 10791  df-cj 10886  df-re 10887  df-im 10888  df-rsqrt 11042  df-abs 11043  df-clim 11322  df-sumdc 11397  df-ef 11691  df-sin 11693  df-cos 11694
This theorem is referenced by:  sinbnd2  11797
  Copyright terms: Public domain W3C validator