Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sinbnd GIF version

Theorem sinbnd 11626
 Description: The sine of a real number lies between -1 and 1. Equation 18 of [Gleason] p. 311. (Contributed by NM, 16-Jan-2006.)
Assertion
Ref Expression
sinbnd (𝐴 ∈ ℝ → (-1 ≤ (sin‘𝐴) ∧ (sin‘𝐴) ≤ 1))

Proof of Theorem sinbnd
StepHypRef Expression
1 recoscl 11595 . . . . . 6 (𝐴 ∈ ℝ → (cos‘𝐴) ∈ ℝ)
21sqge0d 10555 . . . . 5 (𝐴 ∈ ℝ → 0 ≤ ((cos‘𝐴)↑2))
3 resincl 11594 . . . . . . 7 (𝐴 ∈ ℝ → (sin‘𝐴) ∈ ℝ)
43resqcld 10554 . . . . . 6 (𝐴 ∈ ℝ → ((sin‘𝐴)↑2) ∈ ℝ)
51resqcld 10554 . . . . . 6 (𝐴 ∈ ℝ → ((cos‘𝐴)↑2) ∈ ℝ)
64, 5addge01d 8387 . . . . 5 (𝐴 ∈ ℝ → (0 ≤ ((cos‘𝐴)↑2) ↔ ((sin‘𝐴)↑2) ≤ (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2))))
72, 6mpbid 146 . . . 4 (𝐴 ∈ ℝ → ((sin‘𝐴)↑2) ≤ (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)))
8 recn 7844 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
9 sincossq 11622 . . . . . 6 (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1)
108, 9syl 14 . . . . 5 (𝐴 ∈ ℝ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1)
11 sq1 10490 . . . . 5 (1↑2) = 1
1210, 11eqtr4di 2205 . . . 4 (𝐴 ∈ ℝ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = (1↑2))
137, 12breqtrd 3986 . . 3 (𝐴 ∈ ℝ → ((sin‘𝐴)↑2) ≤ (1↑2))
14 1re 7856 . . . . . 6 1 ∈ ℝ
15 0le1 8335 . . . . . 6 0 ≤ 1
16 lenegsq 10972 . . . . . 6 (((sin‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ ∧ 0 ≤ 1) → (((sin‘𝐴) ≤ 1 ∧ -(sin‘𝐴) ≤ 1) ↔ ((sin‘𝐴)↑2) ≤ (1↑2)))
1714, 15, 16mp3an23 1308 . . . . 5 ((sin‘𝐴) ∈ ℝ → (((sin‘𝐴) ≤ 1 ∧ -(sin‘𝐴) ≤ 1) ↔ ((sin‘𝐴)↑2) ≤ (1↑2)))
18 lenegcon1 8320 . . . . . . 7 (((sin‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → (-(sin‘𝐴) ≤ 1 ↔ -1 ≤ (sin‘𝐴)))
1914, 18mpan2 422 . . . . . 6 ((sin‘𝐴) ∈ ℝ → (-(sin‘𝐴) ≤ 1 ↔ -1 ≤ (sin‘𝐴)))
2019anbi2d 460 . . . . 5 ((sin‘𝐴) ∈ ℝ → (((sin‘𝐴) ≤ 1 ∧ -(sin‘𝐴) ≤ 1) ↔ ((sin‘𝐴) ≤ 1 ∧ -1 ≤ (sin‘𝐴))))
2117, 20bitr3d 189 . . . 4 ((sin‘𝐴) ∈ ℝ → (((sin‘𝐴)↑2) ≤ (1↑2) ↔ ((sin‘𝐴) ≤ 1 ∧ -1 ≤ (sin‘𝐴))))
223, 21syl 14 . . 3 (𝐴 ∈ ℝ → (((sin‘𝐴)↑2) ≤ (1↑2) ↔ ((sin‘𝐴) ≤ 1 ∧ -1 ≤ (sin‘𝐴))))
2313, 22mpbid 146 . 2 (𝐴 ∈ ℝ → ((sin‘𝐴) ≤ 1 ∧ -1 ≤ (sin‘𝐴)))
2423ancomd 265 1 (𝐴 ∈ ℝ → (-1 ≤ (sin‘𝐴) ∧ (sin‘𝐴) ≤ 1))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   = wceq 1332   ∈ wcel 2125   class class class wbr 3961  ‘cfv 5163  (class class class)co 5814  ℂcc 7709  ℝcr 7710  0cc0 7711  1c1 7712   + caddc 7714   ≤ cle 7892  -cneg 8026  2c2 8863  ↑cexp 10396  sincsin 11518  cosccos 11519 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-coll 4075  ax-sep 4078  ax-nul 4086  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-iinf 4541  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-1re 7805  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-mulrcl 7810  ax-addcom 7811  ax-mulcom 7812  ax-addass 7813  ax-mulass 7814  ax-distr 7815  ax-i2m1 7816  ax-0lt1 7817  ax-1rid 7818  ax-0id 7819  ax-rnegex 7820  ax-precex 7821  ax-cnre 7822  ax-pre-ltirr 7823  ax-pre-ltwlin 7824  ax-pre-lttrn 7825  ax-pre-apti 7826  ax-pre-ltadd 7827  ax-pre-mulgt0 7828  ax-pre-mulext 7829  ax-arch 7830  ax-caucvg 7831 This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-reu 2439  df-rmo 2440  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-if 3502  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-iun 3847  df-disj 3939  df-br 3962  df-opab 4022  df-mpt 4023  df-tr 4059  df-id 4248  df-po 4251  df-iso 4252  df-iord 4321  df-on 4323  df-ilim 4324  df-suc 4326  df-iom 4544  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-isom 5172  df-riota 5770  df-ov 5817  df-oprab 5818  df-mpo 5819  df-1st 6078  df-2nd 6079  df-recs 6242  df-irdg 6307  df-frec 6328  df-1o 6353  df-oadd 6357  df-er 6469  df-en 6675  df-dom 6676  df-fin 6677  df-sup 6916  df-pnf 7893  df-mnf 7894  df-xr 7895  df-ltxr 7896  df-le 7897  df-sub 8027  df-neg 8028  df-reap 8429  df-ap 8436  df-div 8525  df-inn 8813  df-2 8871  df-3 8872  df-4 8873  df-n0 9070  df-z 9147  df-uz 9419  df-q 9507  df-rp 9539  df-ico 9776  df-fz 9891  df-fzo 10020  df-seqfrec 10323  df-exp 10397  df-fac 10577  df-bc 10599  df-ihash 10627  df-cj 10719  df-re 10720  df-im 10721  df-rsqrt 10875  df-abs 10876  df-clim 11153  df-sumdc 11228  df-ef 11522  df-sin 11524  df-cos 11525 This theorem is referenced by:  sinbnd2  11628
 Copyright terms: Public domain W3C validator