ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ineq1 GIF version

Theorem ineq1 3316
Description: Equality theorem for intersection of two classes. (Contributed by NM, 14-Dec-1993.)
Assertion
Ref Expression
ineq1 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))

Proof of Theorem ineq1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eleq2 2230 . . . 4 (𝐴 = 𝐵 → (𝑥𝐴𝑥𝐵))
21anbi1d 461 . . 3 (𝐴 = 𝐵 → ((𝑥𝐴𝑥𝐶) ↔ (𝑥𝐵𝑥𝐶)))
3 elin 3305 . . 3 (𝑥 ∈ (𝐴𝐶) ↔ (𝑥𝐴𝑥𝐶))
4 elin 3305 . . 3 (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵𝑥𝐶))
52, 3, 43bitr4g 222 . 2 (𝐴 = 𝐵 → (𝑥 ∈ (𝐴𝐶) ↔ 𝑥 ∈ (𝐵𝐶)))
65eqrdv 2163 1 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  cin 3115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-in 3122
This theorem is referenced by:  ineq2  3317  ineq12  3318  ineq1i  3319  ineq1d  3322  dfrab3ss  3400  intprg  3857  inex1g  4118  reseq1  4878  fiintim  6894  uzin2  10929  elrestr  12564  inopn  12641  isbasisg  12682  basis1  12685  basis2  12686  tgval  12689  ntrfval  12740  tgrest  12809  restco  12814  restsn  12820  restopnb  12821  txrest  12916  metrest  13146  qtopbasss  13161  bdinex1g  13783
  Copyright terms: Public domain W3C validator