ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ineq1 GIF version

Theorem ineq1 3209
Description: Equality theorem for intersection of two classes. (Contributed by NM, 14-Dec-1993.)
Assertion
Ref Expression
ineq1 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))

Proof of Theorem ineq1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eleq2 2158 . . . 4 (𝐴 = 𝐵 → (𝑥𝐴𝑥𝐵))
21anbi1d 454 . . 3 (𝐴 = 𝐵 → ((𝑥𝐴𝑥𝐶) ↔ (𝑥𝐵𝑥𝐶)))
3 elin 3198 . . 3 (𝑥 ∈ (𝐴𝐶) ↔ (𝑥𝐴𝑥𝐶))
4 elin 3198 . . 3 (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵𝑥𝐶))
52, 3, 43bitr4g 222 . 2 (𝐴 = 𝐵 → (𝑥 ∈ (𝐴𝐶) ↔ 𝑥 ∈ (𝐵𝐶)))
65eqrdv 2093 1 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1296  wcel 1445  cin 3012
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077
This theorem depends on definitions:  df-bi 116  df-tru 1299  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-v 2635  df-in 3019
This theorem is referenced by:  ineq2  3210  ineq12  3211  ineq1i  3212  ineq1d  3215  dfrab3ss  3293  intprg  3743  inex1g  3996  reseq1  4739  fiintim  6719  uzin2  10551  elrestr  11827  inopn  11869  isbasisg  11909  basis1  11912  basis2  11913  tgval  11916  ntrfval  11967  tgrest  12036  restco  12041  restsn  12047  restopnb  12048  metrest  12307  qtopbasss  12315  bdinex1g  12504
  Copyright terms: Public domain W3C validator