ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ineq1 GIF version

Theorem ineq1 3367
Description: Equality theorem for intersection of two classes. (Contributed by NM, 14-Dec-1993.)
Assertion
Ref Expression
ineq1 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))

Proof of Theorem ineq1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eleq2 2269 . . . 4 (𝐴 = 𝐵 → (𝑥𝐴𝑥𝐵))
21anbi1d 465 . . 3 (𝐴 = 𝐵 → ((𝑥𝐴𝑥𝐶) ↔ (𝑥𝐵𝑥𝐶)))
3 elin 3356 . . 3 (𝑥 ∈ (𝐴𝐶) ↔ (𝑥𝐴𝑥𝐶))
4 elin 3356 . . 3 (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵𝑥𝐶))
52, 3, 43bitr4g 223 . 2 (𝐴 = 𝐵 → (𝑥 ∈ (𝐴𝐶) ↔ 𝑥 ∈ (𝐵𝐶)))
65eqrdv 2203 1 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2176  cin 3165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-in 3172
This theorem is referenced by:  ineq2  3368  ineq12  3369  ineq1i  3370  ineq1d  3373  dfrab3ss  3451  intprg  3918  inex1g  4180  reseq1  4953  fiintim  7028  uzin2  11298  ressvalsets  12896  elrestr  13079  tgval  13094  inopn  14475  isbasisg  14516  basis1  14519  basis2  14520  ntrfval  14572  tgrest  14641  restco  14646  restsn  14652  restopnb  14653  txrest  14748  metrest  14978  qtopbasss  14993  bdinex1g  15837
  Copyright terms: Public domain W3C validator