| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ineq1 | GIF version | ||
| Description: Equality theorem for intersection of two classes. (Contributed by NM, 14-Dec-1993.) |
| Ref | Expression |
|---|---|
| ineq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2268 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 2 | 1 | anbi1d 465 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶))) |
| 3 | elin 3355 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶)) | |
| 4 | elin 3355 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∩ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) | |
| 5 | 2, 3, 4 | 3bitr4g 223 | . 2 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ (𝐴 ∩ 𝐶) ↔ 𝑥 ∈ (𝐵 ∩ 𝐶))) |
| 6 | 5 | eqrdv 2202 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1372 ∈ wcel 2175 ∩ cin 3164 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-in 3171 |
| This theorem is referenced by: ineq2 3367 ineq12 3368 ineq1i 3369 ineq1d 3372 dfrab3ss 3450 intprg 3917 inex1g 4179 reseq1 4952 fiintim 7027 uzin2 11269 ressvalsets 12867 elrestr 13050 tgval 13065 inopn 14446 isbasisg 14487 basis1 14490 basis2 14491 ntrfval 14543 tgrest 14612 restco 14617 restsn 14623 restopnb 14624 txrest 14719 metrest 14949 qtopbasss 14964 bdinex1g 15799 |
| Copyright terms: Public domain | W3C validator |