| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqbrtrrid | GIF version | ||
| Description: B chained equality inference for a binary relation. (Contributed by NM, 17-Sep-2004.) |
| Ref | Expression |
|---|---|
| eqbrtrrid.1 | ⊢ 𝐵 = 𝐴 |
| eqbrtrrid.2 | ⊢ (𝜑 → 𝐵𝑅𝐶) |
| Ref | Expression |
|---|---|
| eqbrtrrid | ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrtrrid.2 | . 2 ⊢ (𝜑 → 𝐵𝑅𝐶) | |
| 2 | eqbrtrrid.1 | . 2 ⊢ 𝐵 = 𝐴 | |
| 3 | eqid 2229 | . 2 ⊢ 𝐶 = 𝐶 | |
| 4 | 1, 2, 3 | 3brtr3g 4116 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 class class class wbr 4083 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 |
| This theorem is referenced by: enpr1g 6958 pr2cv1 7376 endjudisj 7400 recexprlem1ssl 7828 addgt0 8603 addgegt0 8604 addgtge0 8605 addge0 8606 expge1 10806 expcnv 12023 fprodge1 12158 cos12dec 12287 3dvds 12383 bitsinv1lem 12480 ncoprmgcdne1b 12619 phicl2 12744 exmidunben 13005 prdsvalstrd 13312 znidomb 14630 sin0pilem2 15464 cosq23lt0 15515 cos0pilt1 15534 rplogcl 15561 logge0 15562 logdivlti 15563 mersenne 15679 perfectlem2 15682 lgseisen 15761 lgsquadlem1 15764 |
| Copyright terms: Public domain | W3C validator |