ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqbrtrrid GIF version

Theorem eqbrtrrid 4070
Description: B chained equality inference for a binary relation. (Contributed by NM, 17-Sep-2004.)
Hypotheses
Ref Expression
eqbrtrrid.1 𝐵 = 𝐴
eqbrtrrid.2 (𝜑𝐵𝑅𝐶)
Assertion
Ref Expression
eqbrtrrid (𝜑𝐴𝑅𝐶)

Proof of Theorem eqbrtrrid
StepHypRef Expression
1 eqbrtrrid.2 . 2 (𝜑𝐵𝑅𝐶)
2 eqbrtrrid.1 . 2 𝐵 = 𝐴
3 eqid 2196 . 2 𝐶 = 𝐶
41, 2, 33brtr3g 4067 1 (𝜑𝐴𝑅𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364   class class class wbr 4034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035
This theorem is referenced by:  enpr1g  6866  endjudisj  7295  recexprlem1ssl  7719  addgt0  8494  addgegt0  8495  addgtge0  8496  addge0  8497  expge1  10687  expcnv  11688  fprodge1  11823  cos12dec  11952  3dvds  12048  bitsinv1lem  12145  ncoprmgcdne1b  12284  phicl2  12409  exmidunben  12670  prdsvalstrd  12975  znidomb  14292  sin0pilem2  15126  cosq23lt0  15177  cos0pilt1  15196  rplogcl  15223  logge0  15224  logdivlti  15225  mersenne  15341  perfectlem2  15344  lgseisen  15423  lgsquadlem1  15426
  Copyright terms: Public domain W3C validator