| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqbrtrrid | GIF version | ||
| Description: B chained equality inference for a binary relation. (Contributed by NM, 17-Sep-2004.) |
| Ref | Expression |
|---|---|
| eqbrtrrid.1 | ⊢ 𝐵 = 𝐴 |
| eqbrtrrid.2 | ⊢ (𝜑 → 𝐵𝑅𝐶) |
| Ref | Expression |
|---|---|
| eqbrtrrid | ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrtrrid.2 | . 2 ⊢ (𝜑 → 𝐵𝑅𝐶) | |
| 2 | eqbrtrrid.1 | . 2 ⊢ 𝐵 = 𝐴 | |
| 3 | eqid 2206 | . 2 ⊢ 𝐶 = 𝐶 | |
| 4 | 1, 2, 3 | 3brtr3g 4083 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 class class class wbr 4050 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3174 df-sn 3643 df-pr 3644 df-op 3646 df-br 4051 |
| This theorem is referenced by: enpr1g 6902 endjudisj 7337 recexprlem1ssl 7761 addgt0 8536 addgegt0 8537 addgtge0 8538 addge0 8539 expge1 10738 expcnv 11885 fprodge1 12020 cos12dec 12149 3dvds 12245 bitsinv1lem 12342 ncoprmgcdne1b 12481 phicl2 12606 exmidunben 12867 prdsvalstrd 13173 znidomb 14490 sin0pilem2 15324 cosq23lt0 15375 cos0pilt1 15394 rplogcl 15421 logge0 15422 logdivlti 15423 mersenne 15539 perfectlem2 15542 lgseisen 15621 lgsquadlem1 15624 |
| Copyright terms: Public domain | W3C validator |