ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqbrtrrid GIF version

Theorem eqbrtrrid 4086
Description: B chained equality inference for a binary relation. (Contributed by NM, 17-Sep-2004.)
Hypotheses
Ref Expression
eqbrtrrid.1 𝐵 = 𝐴
eqbrtrrid.2 (𝜑𝐵𝑅𝐶)
Assertion
Ref Expression
eqbrtrrid (𝜑𝐴𝑅𝐶)

Proof of Theorem eqbrtrrid
StepHypRef Expression
1 eqbrtrrid.2 . 2 (𝜑𝐵𝑅𝐶)
2 eqbrtrrid.1 . 2 𝐵 = 𝐴
3 eqid 2206 . 2 𝐶 = 𝐶
41, 2, 33brtr3g 4083 1 (𝜑𝐴𝑅𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373   class class class wbr 4050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-un 3174  df-sn 3643  df-pr 3644  df-op 3646  df-br 4051
This theorem is referenced by:  enpr1g  6902  endjudisj  7337  recexprlem1ssl  7761  addgt0  8536  addgegt0  8537  addgtge0  8538  addge0  8539  expge1  10738  expcnv  11885  fprodge1  12020  cos12dec  12149  3dvds  12245  bitsinv1lem  12342  ncoprmgcdne1b  12481  phicl2  12606  exmidunben  12867  prdsvalstrd  13173  znidomb  14490  sin0pilem2  15324  cosq23lt0  15375  cos0pilt1  15394  rplogcl  15421  logge0  15422  logdivlti  15423  mersenne  15539  perfectlem2  15542  lgseisen  15621  lgsquadlem1  15624
  Copyright terms: Public domain W3C validator