Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqbrtrrid | GIF version |
Description: B chained equality inference for a binary relation. (Contributed by NM, 17-Sep-2004.) |
Ref | Expression |
---|---|
eqbrtrrid.1 | ⊢ 𝐵 = 𝐴 |
eqbrtrrid.2 | ⊢ (𝜑 → 𝐵𝑅𝐶) |
Ref | Expression |
---|---|
eqbrtrrid | ⊢ (𝜑 → 𝐴𝑅𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqbrtrrid.2 | . 2 ⊢ (𝜑 → 𝐵𝑅𝐶) | |
2 | eqbrtrrid.1 | . 2 ⊢ 𝐵 = 𝐴 | |
3 | eqid 2165 | . 2 ⊢ 𝐶 = 𝐶 | |
4 | 1, 2, 3 | 3brtr3g 4015 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 class class class wbr 3982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 |
This theorem is referenced by: enpr1g 6764 endjudisj 7166 recexprlem1ssl 7574 addgt0 8346 addgegt0 8347 addgtge0 8348 addge0 8349 expge1 10492 expcnv 11445 fprodge1 11580 cos12dec 11708 ncoprmgcdne1b 12021 phicl2 12146 exmidunben 12359 sin0pilem2 13343 cosq23lt0 13394 cos0pilt1 13413 rplogcl 13440 logge0 13441 logdivlti 13442 |
Copyright terms: Public domain | W3C validator |