Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqbrtrrid | GIF version |
Description: B chained equality inference for a binary relation. (Contributed by NM, 17-Sep-2004.) |
Ref | Expression |
---|---|
eqbrtrrid.1 | ⊢ 𝐵 = 𝐴 |
eqbrtrrid.2 | ⊢ (𝜑 → 𝐵𝑅𝐶) |
Ref | Expression |
---|---|
eqbrtrrid | ⊢ (𝜑 → 𝐴𝑅𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqbrtrrid.2 | . 2 ⊢ (𝜑 → 𝐵𝑅𝐶) | |
2 | eqbrtrrid.1 | . 2 ⊢ 𝐵 = 𝐴 | |
3 | eqid 2170 | . 2 ⊢ 𝐶 = 𝐶 | |
4 | 1, 2, 3 | 3brtr3g 4022 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 class class class wbr 3989 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 |
This theorem is referenced by: enpr1g 6776 endjudisj 7187 recexprlem1ssl 7595 addgt0 8367 addgegt0 8368 addgtge0 8369 addge0 8370 expge1 10513 expcnv 11467 fprodge1 11602 cos12dec 11730 ncoprmgcdne1b 12043 phicl2 12168 exmidunben 12381 sin0pilem2 13497 cosq23lt0 13548 cos0pilt1 13567 rplogcl 13594 logge0 13595 logdivlti 13596 |
Copyright terms: Public domain | W3C validator |