| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqbrtrrid | GIF version | ||
| Description: B chained equality inference for a binary relation. (Contributed by NM, 17-Sep-2004.) |
| Ref | Expression |
|---|---|
| eqbrtrrid.1 | ⊢ 𝐵 = 𝐴 |
| eqbrtrrid.2 | ⊢ (𝜑 → 𝐵𝑅𝐶) |
| Ref | Expression |
|---|---|
| eqbrtrrid | ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrtrrid.2 | . 2 ⊢ (𝜑 → 𝐵𝑅𝐶) | |
| 2 | eqbrtrrid.1 | . 2 ⊢ 𝐵 = 𝐴 | |
| 3 | eqid 2196 | . 2 ⊢ 𝐶 = 𝐶 | |
| 4 | 1, 2, 3 | 3brtr3g 4067 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 class class class wbr 4034 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 |
| This theorem is referenced by: enpr1g 6866 endjudisj 7295 recexprlem1ssl 7719 addgt0 8494 addgegt0 8495 addgtge0 8496 addge0 8497 expge1 10687 expcnv 11688 fprodge1 11823 cos12dec 11952 3dvds 12048 bitsinv1lem 12145 ncoprmgcdne1b 12284 phicl2 12409 exmidunben 12670 prdsvalstrd 12975 znidomb 14292 sin0pilem2 15126 cosq23lt0 15177 cos0pilt1 15196 rplogcl 15223 logge0 15224 logdivlti 15225 mersenne 15341 perfectlem2 15344 lgseisen 15423 lgsquadlem1 15426 |
| Copyright terms: Public domain | W3C validator |