| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqbrtrrid | GIF version | ||
| Description: B chained equality inference for a binary relation. (Contributed by NM, 17-Sep-2004.) |
| Ref | Expression |
|---|---|
| eqbrtrrid.1 | ⊢ 𝐵 = 𝐴 |
| eqbrtrrid.2 | ⊢ (𝜑 → 𝐵𝑅𝐶) |
| Ref | Expression |
|---|---|
| eqbrtrrid | ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrtrrid.2 | . 2 ⊢ (𝜑 → 𝐵𝑅𝐶) | |
| 2 | eqbrtrrid.1 | . 2 ⊢ 𝐵 = 𝐴 | |
| 3 | eqid 2229 | . 2 ⊢ 𝐶 = 𝐶 | |
| 4 | 1, 2, 3 | 3brtr3g 4115 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 class class class wbr 4082 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 |
| This theorem is referenced by: enpr1g 6940 pr2cv1 7356 endjudisj 7380 recexprlem1ssl 7808 addgt0 8583 addgegt0 8584 addgtge0 8585 addge0 8586 expge1 10785 expcnv 12001 fprodge1 12136 cos12dec 12265 3dvds 12361 bitsinv1lem 12458 ncoprmgcdne1b 12597 phicl2 12722 exmidunben 12983 prdsvalstrd 13290 znidomb 14607 sin0pilem2 15441 cosq23lt0 15492 cos0pilt1 15511 rplogcl 15538 logge0 15539 logdivlti 15540 mersenne 15656 perfectlem2 15659 lgseisen 15738 lgsquadlem1 15741 |
| Copyright terms: Public domain | W3C validator |