ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqbrtrrid GIF version

Theorem eqbrtrrid 4119
Description: B chained equality inference for a binary relation. (Contributed by NM, 17-Sep-2004.)
Hypotheses
Ref Expression
eqbrtrrid.1 𝐵 = 𝐴
eqbrtrrid.2 (𝜑𝐵𝑅𝐶)
Assertion
Ref Expression
eqbrtrrid (𝜑𝐴𝑅𝐶)

Proof of Theorem eqbrtrrid
StepHypRef Expression
1 eqbrtrrid.2 . 2 (𝜑𝐵𝑅𝐶)
2 eqbrtrrid.1 . 2 𝐵 = 𝐴
3 eqid 2229 . 2 𝐶 = 𝐶
41, 2, 33brtr3g 4116 1 (𝜑𝐴𝑅𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395   class class class wbr 4083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084
This theorem is referenced by:  enpr1g  6958  pr2cv1  7376  endjudisj  7400  recexprlem1ssl  7828  addgt0  8603  addgegt0  8604  addgtge0  8605  addge0  8606  expge1  10806  expcnv  12023  fprodge1  12158  cos12dec  12287  3dvds  12383  bitsinv1lem  12480  ncoprmgcdne1b  12619  phicl2  12744  exmidunben  13005  prdsvalstrd  13312  znidomb  14630  sin0pilem2  15464  cosq23lt0  15515  cos0pilt1  15534  rplogcl  15561  logge0  15562  logdivlti  15563  mersenne  15679  perfectlem2  15682  lgseisen  15761  lgsquadlem1  15764
  Copyright terms: Public domain W3C validator