![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqbrtrrid | GIF version |
Description: B chained equality inference for a binary relation. (Contributed by NM, 17-Sep-2004.) |
Ref | Expression |
---|---|
eqbrtrrid.1 | ⊢ 𝐵 = 𝐴 |
eqbrtrrid.2 | ⊢ (𝜑 → 𝐵𝑅𝐶) |
Ref | Expression |
---|---|
eqbrtrrid | ⊢ (𝜑 → 𝐴𝑅𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqbrtrrid.2 | . 2 ⊢ (𝜑 → 𝐵𝑅𝐶) | |
2 | eqbrtrrid.1 | . 2 ⊢ 𝐵 = 𝐴 | |
3 | eqid 2187 | . 2 ⊢ 𝐶 = 𝐶 | |
4 | 1, 2, 3 | 3brtr3g 4048 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1363 class class class wbr 4015 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-v 2751 df-un 3145 df-sn 3610 df-pr 3611 df-op 3613 df-br 4016 |
This theorem is referenced by: enpr1g 6812 endjudisj 7223 recexprlem1ssl 7646 addgt0 8419 addgegt0 8420 addgtge0 8421 addge0 8422 expge1 10571 expcnv 11526 fprodge1 11661 cos12dec 11789 ncoprmgcdne1b 12103 phicl2 12228 exmidunben 12441 sin0pilem2 14556 cosq23lt0 14607 cos0pilt1 14626 rplogcl 14653 logge0 14654 logdivlti 14655 |
Copyright terms: Public domain | W3C validator |