| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqbrtrrid | GIF version | ||
| Description: B chained equality inference for a binary relation. (Contributed by NM, 17-Sep-2004.) |
| Ref | Expression |
|---|---|
| eqbrtrrid.1 | ⊢ 𝐵 = 𝐴 |
| eqbrtrrid.2 | ⊢ (𝜑 → 𝐵𝑅𝐶) |
| Ref | Expression |
|---|---|
| eqbrtrrid | ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrtrrid.2 | . 2 ⊢ (𝜑 → 𝐵𝑅𝐶) | |
| 2 | eqbrtrrid.1 | . 2 ⊢ 𝐵 = 𝐴 | |
| 3 | eqid 2196 | . 2 ⊢ 𝐶 = 𝐶 | |
| 4 | 1, 2, 3 | 3brtr3g 4067 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 class class class wbr 4034 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 |
| This theorem is referenced by: enpr1g 6866 endjudisj 7293 recexprlem1ssl 7717 addgt0 8492 addgegt0 8493 addgtge0 8494 addge0 8495 expge1 10685 expcnv 11686 fprodge1 11821 cos12dec 11950 3dvds 12046 bitsinv1lem 12143 ncoprmgcdne1b 12282 phicl2 12407 exmidunben 12668 prdsvalstrd 12973 znidomb 14290 sin0pilem2 15102 cosq23lt0 15153 cos0pilt1 15172 rplogcl 15199 logge0 15200 logdivlti 15201 mersenne 15317 perfectlem2 15320 lgseisen 15399 lgsquadlem1 15402 |
| Copyright terms: Public domain | W3C validator |