ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqbrtrrid GIF version

Theorem eqbrtrrid 4051
Description: B chained equality inference for a binary relation. (Contributed by NM, 17-Sep-2004.)
Hypotheses
Ref Expression
eqbrtrrid.1 𝐵 = 𝐴
eqbrtrrid.2 (𝜑𝐵𝑅𝐶)
Assertion
Ref Expression
eqbrtrrid (𝜑𝐴𝑅𝐶)

Proof of Theorem eqbrtrrid
StepHypRef Expression
1 eqbrtrrid.2 . 2 (𝜑𝐵𝑅𝐶)
2 eqbrtrrid.1 . 2 𝐵 = 𝐴
3 eqid 2187 . 2 𝐶 = 𝐶
41, 2, 33brtr3g 4048 1 (𝜑𝐴𝑅𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1363   class class class wbr 4015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-v 2751  df-un 3145  df-sn 3610  df-pr 3611  df-op 3613  df-br 4016
This theorem is referenced by:  enpr1g  6812  endjudisj  7223  recexprlem1ssl  7646  addgt0  8419  addgegt0  8420  addgtge0  8421  addge0  8422  expge1  10571  expcnv  11526  fprodge1  11661  cos12dec  11789  ncoprmgcdne1b  12103  phicl2  12228  exmidunben  12441  sin0pilem2  14556  cosq23lt0  14607  cos0pilt1  14626  rplogcl  14653  logge0  14654  logdivlti  14655
  Copyright terms: Public domain W3C validator