ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breqtrrid GIF version

Theorem breqtrrid 4071
Description: B chained equality inference for a binary relation. (Contributed by NM, 24-Apr-2005.)
Hypotheses
Ref Expression
breqtrrid.1 𝐴𝑅𝐵
breqtrrid.2 (𝜑𝐶 = 𝐵)
Assertion
Ref Expression
breqtrrid (𝜑𝐴𝑅𝐶)

Proof of Theorem breqtrrid
StepHypRef Expression
1 breqtrrid.1 . 2 𝐴𝑅𝐵
2 breqtrrid.2 . . 3 (𝜑𝐶 = 𝐵)
32eqcomd 2202 . 2 (𝜑𝐵 = 𝐶)
41, 3breqtrid 4070 1 (𝜑𝐴𝑅𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364   class class class wbr 4033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034
This theorem is referenced by:  xsubge0  9956  xposdif  9957  bernneq  10752  bitsfzo  12119  pcge0  12482  rpabscxpbnd  15176  lgsdir2lem2  15270  2lgsoddprmlem3  15352  trilpolemclim  15680  trilpolemlt1  15685  nconstwlpolemgt0  15708
  Copyright terms: Public domain W3C validator