ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  phplem3 GIF version

Theorem phplem3 7023
Description: Lemma for Pigeonhole Principle. A natural number is equinumerous to its successor minus any element of the successor. For a version without the redundant hypotheses, see phplem3g 7025. (Contributed by NM, 26-May-1998.)
Hypotheses
Ref Expression
phplem2.1 𝐴 ∈ V
phplem2.2 𝐵 ∈ V
Assertion
Ref Expression
phplem3 ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵}))

Proof of Theorem phplem3
StepHypRef Expression
1 elsuci 4494 . 2 (𝐵 ∈ suc 𝐴 → (𝐵𝐴𝐵 = 𝐴))
2 phplem2.1 . . . 4 𝐴 ∈ V
3 phplem2.2 . . . 4 𝐵 ∈ V
42, 3phplem2 7022 . . 3 ((𝐴 ∈ ω ∧ 𝐵𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵}))
52enref 6924 . . . 4 𝐴𝐴
6 nnord 4704 . . . . . 6 (𝐴 ∈ ω → Ord 𝐴)
7 orddif 4639 . . . . . 6 (Ord 𝐴𝐴 = (suc 𝐴 ∖ {𝐴}))
86, 7syl 14 . . . . 5 (𝐴 ∈ ω → 𝐴 = (suc 𝐴 ∖ {𝐴}))
9 sneq 3677 . . . . . . 7 (𝐴 = 𝐵 → {𝐴} = {𝐵})
109difeq2d 3322 . . . . . 6 (𝐴 = 𝐵 → (suc 𝐴 ∖ {𝐴}) = (suc 𝐴 ∖ {𝐵}))
1110eqcoms 2232 . . . . 5 (𝐵 = 𝐴 → (suc 𝐴 ∖ {𝐴}) = (suc 𝐴 ∖ {𝐵}))
128, 11sylan9eq 2282 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 = 𝐴) → 𝐴 = (suc 𝐴 ∖ {𝐵}))
135, 12breqtrid 4120 . . 3 ((𝐴 ∈ ω ∧ 𝐵 = 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵}))
144, 13jaodan 802 . 2 ((𝐴 ∈ ω ∧ (𝐵𝐴𝐵 = 𝐴)) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵}))
151, 14sylan2 286 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 713   = wceq 1395  wcel 2200  Vcvv 2799  cdif 3194  {csn 3666   class class class wbr 4083  Ord word 4453  suc csuc 4456  ωcom 4682  cen 6893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-en 6896
This theorem is referenced by:  phplem4  7024  phplem3g  7025
  Copyright terms: Public domain W3C validator