ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  phplem3 GIF version

Theorem phplem3 6832
Description: Lemma for Pigeonhole Principle. A natural number is equinumerous to its successor minus any element of the successor. For a version without the redundant hypotheses, see phplem3g 6834. (Contributed by NM, 26-May-1998.)
Hypotheses
Ref Expression
phplem2.1 𝐴 ∈ V
phplem2.2 𝐵 ∈ V
Assertion
Ref Expression
phplem3 ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵}))

Proof of Theorem phplem3
StepHypRef Expression
1 elsuci 4388 . 2 (𝐵 ∈ suc 𝐴 → (𝐵𝐴𝐵 = 𝐴))
2 phplem2.1 . . . 4 𝐴 ∈ V
3 phplem2.2 . . . 4 𝐵 ∈ V
42, 3phplem2 6831 . . 3 ((𝐴 ∈ ω ∧ 𝐵𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵}))
52enref 6743 . . . 4 𝐴𝐴
6 nnord 4596 . . . . . 6 (𝐴 ∈ ω → Ord 𝐴)
7 orddif 4531 . . . . . 6 (Ord 𝐴𝐴 = (suc 𝐴 ∖ {𝐴}))
86, 7syl 14 . . . . 5 (𝐴 ∈ ω → 𝐴 = (suc 𝐴 ∖ {𝐴}))
9 sneq 3594 . . . . . . 7 (𝐴 = 𝐵 → {𝐴} = {𝐵})
109difeq2d 3245 . . . . . 6 (𝐴 = 𝐵 → (suc 𝐴 ∖ {𝐴}) = (suc 𝐴 ∖ {𝐵}))
1110eqcoms 2173 . . . . 5 (𝐵 = 𝐴 → (suc 𝐴 ∖ {𝐴}) = (suc 𝐴 ∖ {𝐵}))
128, 11sylan9eq 2223 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 = 𝐴) → 𝐴 = (suc 𝐴 ∖ {𝐵}))
135, 12breqtrid 4026 . . 3 ((𝐴 ∈ ω ∧ 𝐵 = 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵}))
144, 13jaodan 792 . 2 ((𝐴 ∈ ω ∧ (𝐵𝐴𝐵 = 𝐴)) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵}))
151, 14sylan2 284 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 703   = wceq 1348  wcel 2141  Vcvv 2730  cdif 3118  {csn 3583   class class class wbr 3989  Ord word 4347  suc csuc 4350  ωcom 4574  cen 6716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-en 6719
This theorem is referenced by:  phplem4  6833  phplem3g  6834
  Copyright terms: Public domain W3C validator