| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > phplem3 | GIF version | ||
| Description: Lemma for Pigeonhole Principle. A natural number is equinumerous to its successor minus any element of the successor. For a version without the redundant hypotheses, see phplem3g 6985. (Contributed by NM, 26-May-1998.) |
| Ref | Expression |
|---|---|
| phplem2.1 | ⊢ 𝐴 ∈ V |
| phplem2.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| phplem3 | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsuci 4471 | . 2 ⊢ (𝐵 ∈ suc 𝐴 → (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴)) | |
| 2 | phplem2.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 3 | phplem2.2 | . . . 4 ⊢ 𝐵 ∈ V | |
| 4 | 2, 3 | phplem2 6982 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵})) |
| 5 | 2 | enref 6886 | . . . 4 ⊢ 𝐴 ≈ 𝐴 |
| 6 | nnord 4681 | . . . . . 6 ⊢ (𝐴 ∈ ω → Ord 𝐴) | |
| 7 | orddif 4616 | . . . . . 6 ⊢ (Ord 𝐴 → 𝐴 = (suc 𝐴 ∖ {𝐴})) | |
| 8 | 6, 7 | syl 14 | . . . . 5 ⊢ (𝐴 ∈ ω → 𝐴 = (suc 𝐴 ∖ {𝐴})) |
| 9 | sneq 3657 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
| 10 | 9 | difeq2d 3302 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (suc 𝐴 ∖ {𝐴}) = (suc 𝐴 ∖ {𝐵})) |
| 11 | 10 | eqcoms 2212 | . . . . 5 ⊢ (𝐵 = 𝐴 → (suc 𝐴 ∖ {𝐴}) = (suc 𝐴 ∖ {𝐵})) |
| 12 | 8, 11 | sylan9eq 2262 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 = 𝐴) → 𝐴 = (suc 𝐴 ∖ {𝐵})) |
| 13 | 5, 12 | breqtrid 4099 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 = 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵})) |
| 14 | 4, 13 | jaodan 801 | . 2 ⊢ ((𝐴 ∈ ω ∧ (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴)) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵})) |
| 15 | 1, 14 | sylan2 286 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵})) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 712 = wceq 1375 ∈ wcel 2180 Vcvv 2779 ∖ cdif 3174 {csn 3646 class class class wbr 4062 Ord word 4430 suc csuc 4433 ωcom 4659 ≈ cen 6855 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-rab 2497 df-v 2781 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-opab 4125 df-tr 4162 df-id 4361 df-iord 4434 df-on 4436 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-en 6858 |
| This theorem is referenced by: phplem4 6984 phplem3g 6985 |
| Copyright terms: Public domain | W3C validator |