![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cbvopab1s | GIF version |
Description: Change first bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 31-Jul-2003.) |
Ref | Expression |
---|---|
cbvopab1s | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑧, 𝑦〉 ∣ [𝑧 / 𝑥]𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1539 | . . . 4 ⊢ Ⅎ𝑧∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) | |
2 | nfv 1539 | . . . . . 6 ⊢ Ⅎ𝑥 𝑤 = 〈𝑧, 𝑦〉 | |
3 | nfs1v 1951 | . . . . . 6 ⊢ Ⅎ𝑥[𝑧 / 𝑥]𝜑 | |
4 | 2, 3 | nfan 1576 | . . . . 5 ⊢ Ⅎ𝑥(𝑤 = 〈𝑧, 𝑦〉 ∧ [𝑧 / 𝑥]𝜑) |
5 | 4 | nfex 1648 | . . . 4 ⊢ Ⅎ𝑥∃𝑦(𝑤 = 〈𝑧, 𝑦〉 ∧ [𝑧 / 𝑥]𝜑) |
6 | opeq1 3796 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → 〈𝑥, 𝑦〉 = 〈𝑧, 𝑦〉) | |
7 | 6 | eqeq2d 2201 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (𝑤 = 〈𝑥, 𝑦〉 ↔ 𝑤 = 〈𝑧, 𝑦〉)) |
8 | sbequ12 1782 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) | |
9 | 7, 8 | anbi12d 473 | . . . . 5 ⊢ (𝑥 = 𝑧 → ((𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ (𝑤 = 〈𝑧, 𝑦〉 ∧ [𝑧 / 𝑥]𝜑))) |
10 | 9 | exbidv 1836 | . . . 4 ⊢ (𝑥 = 𝑧 → (∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑦(𝑤 = 〈𝑧, 𝑦〉 ∧ [𝑧 / 𝑥]𝜑))) |
11 | 1, 5, 10 | cbvex 1767 | . . 3 ⊢ (∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑧∃𝑦(𝑤 = 〈𝑧, 𝑦〉 ∧ [𝑧 / 𝑥]𝜑)) |
12 | 11 | abbii 2305 | . 2 ⊢ {𝑤 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} = {𝑤 ∣ ∃𝑧∃𝑦(𝑤 = 〈𝑧, 𝑦〉 ∧ [𝑧 / 𝑥]𝜑)} |
13 | df-opab 4083 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑤 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
14 | df-opab 4083 | . 2 ⊢ {〈𝑧, 𝑦〉 ∣ [𝑧 / 𝑥]𝜑} = {𝑤 ∣ ∃𝑧∃𝑦(𝑤 = 〈𝑧, 𝑦〉 ∧ [𝑧 / 𝑥]𝜑)} | |
15 | 12, 13, 14 | 3eqtr4i 2220 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑧, 𝑦〉 ∣ [𝑧 / 𝑥]𝜑} |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1364 ∃wex 1503 [wsb 1773 {cab 2175 〈cop 3613 {copab 4081 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-v 2754 df-un 3148 df-sn 3616 df-pr 3617 df-op 3619 df-opab 4083 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |