Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cbvopab1s | GIF version |
Description: Change first bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 31-Jul-2003.) |
Ref | Expression |
---|---|
cbvopab1s | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑧, 𝑦〉 ∣ [𝑧 / 𝑥]𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1516 | . . . 4 ⊢ Ⅎ𝑧∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) | |
2 | nfv 1516 | . . . . . 6 ⊢ Ⅎ𝑥 𝑤 = 〈𝑧, 𝑦〉 | |
3 | nfs1v 1927 | . . . . . 6 ⊢ Ⅎ𝑥[𝑧 / 𝑥]𝜑 | |
4 | 2, 3 | nfan 1553 | . . . . 5 ⊢ Ⅎ𝑥(𝑤 = 〈𝑧, 𝑦〉 ∧ [𝑧 / 𝑥]𝜑) |
5 | 4 | nfex 1625 | . . . 4 ⊢ Ⅎ𝑥∃𝑦(𝑤 = 〈𝑧, 𝑦〉 ∧ [𝑧 / 𝑥]𝜑) |
6 | opeq1 3758 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → 〈𝑥, 𝑦〉 = 〈𝑧, 𝑦〉) | |
7 | 6 | eqeq2d 2177 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (𝑤 = 〈𝑥, 𝑦〉 ↔ 𝑤 = 〈𝑧, 𝑦〉)) |
8 | sbequ12 1759 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) | |
9 | 7, 8 | anbi12d 465 | . . . . 5 ⊢ (𝑥 = 𝑧 → ((𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ (𝑤 = 〈𝑧, 𝑦〉 ∧ [𝑧 / 𝑥]𝜑))) |
10 | 9 | exbidv 1813 | . . . 4 ⊢ (𝑥 = 𝑧 → (∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑦(𝑤 = 〈𝑧, 𝑦〉 ∧ [𝑧 / 𝑥]𝜑))) |
11 | 1, 5, 10 | cbvex 1744 | . . 3 ⊢ (∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑧∃𝑦(𝑤 = 〈𝑧, 𝑦〉 ∧ [𝑧 / 𝑥]𝜑)) |
12 | 11 | abbii 2282 | . 2 ⊢ {𝑤 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} = {𝑤 ∣ ∃𝑧∃𝑦(𝑤 = 〈𝑧, 𝑦〉 ∧ [𝑧 / 𝑥]𝜑)} |
13 | df-opab 4044 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑤 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
14 | df-opab 4044 | . 2 ⊢ {〈𝑧, 𝑦〉 ∣ [𝑧 / 𝑥]𝜑} = {𝑤 ∣ ∃𝑧∃𝑦(𝑤 = 〈𝑧, 𝑦〉 ∧ [𝑧 / 𝑥]𝜑)} | |
15 | 12, 13, 14 | 3eqtr4i 2196 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑧, 𝑦〉 ∣ [𝑧 / 𝑥]𝜑} |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1343 ∃wex 1480 [wsb 1750 {cab 2151 〈cop 3579 {copab 4042 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-opab 4044 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |