ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  usgredg2v GIF version

Theorem usgredg2v 16030
Description: In a simple graph, the mapping of edges having a fixed endpoint to the other vertex of the edge is a one-to-one function into the set of vertices. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 18-Oct-2020.)
Hypotheses
Ref Expression
usgredg2v.v 𝑉 = (Vtx‘𝐺)
usgredg2v.e 𝐸 = (iEdg‘𝐺)
usgredg2v.a 𝐴 = {𝑥 ∈ dom 𝐸𝑁 ∈ (𝐸𝑥)}
usgredg2v.f 𝐹 = (𝑦𝐴 ↦ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}))
Assertion
Ref Expression
usgredg2v ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → 𝐹:𝐴1-1𝑉)
Distinct variable groups:   𝑥,𝐸,𝑧   𝑧,𝐺   𝑥,𝑁,𝑧   𝑧,𝑉   𝑦,𝐴   𝑦,𝐸,𝑥,𝑧   𝑦,𝐺   𝑦,𝑁   𝑦,𝑉
Allowed substitution hints:   𝐴(𝑥,𝑧)   𝐹(𝑥,𝑦,𝑧)   𝐺(𝑥)   𝑉(𝑥)

Proof of Theorem usgredg2v
Dummy variables 𝑤 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 usgredg2v.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 usgredg2v.e . . . . 5 𝐸 = (iEdg‘𝐺)
3 usgredg2v.a . . . . 5 𝐴 = {𝑥 ∈ dom 𝐸𝑁 ∈ (𝐸𝑥)}
41, 2, 3usgredg2vlem1 16028 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑦𝐴) → (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) ∈ 𝑉)
54ralrimiva 2603 . . 3 (𝐺 ∈ USGraph → ∀𝑦𝐴 (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) ∈ 𝑉)
65adantr 276 . 2 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → ∀𝑦𝐴 (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) ∈ 𝑉)
7 simpr 110 . . . . . . . 8 ((((𝐺 ∈ USGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑤𝐴)) ∧ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁})) → (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁}))
8 preq1 3743 . . . . . . . . . 10 (𝑢 = 𝑧 → {𝑢, 𝑁} = {𝑧, 𝑁})
98eqeq2d 2241 . . . . . . . . 9 (𝑢 = 𝑧 → ((𝐸𝑦) = {𝑢, 𝑁} ↔ (𝐸𝑦) = {𝑧, 𝑁}))
109cbvriotavw 5971 . . . . . . . 8 (𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁})
118eqeq2d 2241 . . . . . . . . 9 (𝑢 = 𝑧 → ((𝐸𝑤) = {𝑢, 𝑁} ↔ (𝐸𝑤) = {𝑧, 𝑁}))
1211cbvriotavw 5971 . . . . . . . 8 (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁})
137, 10, 123eqtr4g 2287 . . . . . . 7 ((((𝐺 ∈ USGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑤𝐴)) ∧ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁})) → (𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}))
14 eqid 2229 . . . . . . 7 𝑁 = 𝑁
1513, 14jctir 313 . . . . . 6 ((((𝐺 ∈ USGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑤𝐴)) ∧ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁})) → ((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ∧ 𝑁 = 𝑁))
1615orcd 738 . . . . 5 ((((𝐺 ∈ USGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑤𝐴)) ∧ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁})) → (((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ∧ 𝑁 = 𝑁) ∨ ((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = 𝑁𝑁 = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}))))
17 simpl 109 . . . . . . . . . 10 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → 𝐺 ∈ USGraph)
18 simpl 109 . . . . . . . . . 10 ((𝑦𝐴𝑤𝐴) → 𝑦𝐴)
1917, 18anim12i 338 . . . . . . . . 9 (((𝐺 ∈ USGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑤𝐴)) → (𝐺 ∈ USGraph ∧ 𝑦𝐴))
201, 2, 3usgredg2vlem2 16029 . . . . . . . . 9 ((𝐺 ∈ USGraph ∧ 𝑦𝐴) → ((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) → (𝐸𝑦) = {(𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}), 𝑁}))
2119, 10, 20mpisyl 1489 . . . . . . . 8 (((𝐺 ∈ USGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑤𝐴)) → (𝐸𝑦) = {(𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}), 𝑁})
22 an3 589 . . . . . . . . 9 (((𝐺 ∈ USGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑤𝐴)) → (𝐺 ∈ USGraph ∧ 𝑤𝐴))
231, 2, 3usgredg2vlem2 16029 . . . . . . . . 9 ((𝐺 ∈ USGraph ∧ 𝑤𝐴) → ((𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁}) → (𝐸𝑤) = {(𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}), 𝑁}))
2422, 12, 23mpisyl 1489 . . . . . . . 8 (((𝐺 ∈ USGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑤𝐴)) → (𝐸𝑤) = {(𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}), 𝑁})
2521, 24eqeq12d 2244 . . . . . . 7 (((𝐺 ∈ USGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑤𝐴)) → ((𝐸𝑦) = (𝐸𝑤) ↔ {(𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}), 𝑁} = {(𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}), 𝑁}))
262usgrf1 15981 . . . . . . . . 9 (𝐺 ∈ USGraph → 𝐸:dom 𝐸1-1→ran 𝐸)
2726adantr 276 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → 𝐸:dom 𝐸1-1→ran 𝐸)
28 elrabi 2956 . . . . . . . . . 10 (𝑦 ∈ {𝑥 ∈ dom 𝐸𝑁 ∈ (𝐸𝑥)} → 𝑦 ∈ dom 𝐸)
2928, 3eleq2s 2324 . . . . . . . . 9 (𝑦𝐴𝑦 ∈ dom 𝐸)
30 elrabi 2956 . . . . . . . . . 10 (𝑤 ∈ {𝑥 ∈ dom 𝐸𝑁 ∈ (𝐸𝑥)} → 𝑤 ∈ dom 𝐸)
3130, 3eleq2s 2324 . . . . . . . . 9 (𝑤𝐴𝑤 ∈ dom 𝐸)
3229, 31anim12i 338 . . . . . . . 8 ((𝑦𝐴𝑤𝐴) → (𝑦 ∈ dom 𝐸𝑤 ∈ dom 𝐸))
33 f1fveq 5902 . . . . . . . 8 ((𝐸:dom 𝐸1-1→ran 𝐸 ∧ (𝑦 ∈ dom 𝐸𝑤 ∈ dom 𝐸)) → ((𝐸𝑦) = (𝐸𝑤) ↔ 𝑦 = 𝑤))
3427, 32, 33syl2an 289 . . . . . . 7 (((𝐺 ∈ USGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑤𝐴)) → ((𝐸𝑦) = (𝐸𝑤) ↔ 𝑦 = 𝑤))
35 vtxex 15827 . . . . . . . . . . . 12 (𝐺 ∈ USGraph → (Vtx‘𝐺) ∈ V)
361, 35eqeltrid 2316 . . . . . . . . . . 11 (𝐺 ∈ USGraph → 𝑉 ∈ V)
37 riotaexg 5964 . . . . . . . . . . 11 (𝑉 ∈ V → (𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) ∈ V)
3836, 37syl 14 . . . . . . . . . 10 (𝐺 ∈ USGraph → (𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) ∈ V)
3938adantr 276 . . . . . . . . 9 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → (𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) ∈ V)
40 simpr 110 . . . . . . . . 9 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → 𝑁𝑉)
41 riotaexg 5964 . . . . . . . . . . 11 (𝑉 ∈ V → (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ∈ V)
4236, 41syl 14 . . . . . . . . . 10 (𝐺 ∈ USGraph → (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ∈ V)
4342adantr 276 . . . . . . . . 9 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ∈ V)
44 preq12bg 3851 . . . . . . . . 9 ((((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) ∈ V ∧ 𝑁𝑉) ∧ ((𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ∈ V ∧ 𝑁𝑉)) → ({(𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}), 𝑁} = {(𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}), 𝑁} ↔ (((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ∧ 𝑁 = 𝑁) ∨ ((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = 𝑁𝑁 = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁})))))
4539, 40, 43, 40, 44syl22anc 1272 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → ({(𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}), 𝑁} = {(𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}), 𝑁} ↔ (((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ∧ 𝑁 = 𝑁) ∨ ((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = 𝑁𝑁 = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁})))))
4645adantr 276 . . . . . . 7 (((𝐺 ∈ USGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑤𝐴)) → ({(𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}), 𝑁} = {(𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}), 𝑁} ↔ (((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ∧ 𝑁 = 𝑁) ∨ ((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = 𝑁𝑁 = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁})))))
4725, 34, 463bitr3d 218 . . . . . 6 (((𝐺 ∈ USGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑤𝐴)) → (𝑦 = 𝑤 ↔ (((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ∧ 𝑁 = 𝑁) ∨ ((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = 𝑁𝑁 = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁})))))
4847adantr 276 . . . . 5 ((((𝐺 ∈ USGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑤𝐴)) ∧ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁})) → (𝑦 = 𝑤 ↔ (((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ∧ 𝑁 = 𝑁) ∨ ((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = 𝑁𝑁 = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁})))))
4916, 48mpbird 167 . . . 4 ((((𝐺 ∈ USGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑤𝐴)) ∧ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁})) → 𝑦 = 𝑤)
5049ex 115 . . 3 (((𝐺 ∈ USGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑤𝐴)) → ((𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁}) → 𝑦 = 𝑤))
5150ralrimivva 2612 . 2 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → ∀𝑦𝐴𝑤𝐴 ((𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁}) → 𝑦 = 𝑤))
52 usgredg2v.f . . 3 𝐹 = (𝑦𝐴 ↦ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}))
53 fveqeq2 5638 . . . 4 (𝑦 = 𝑤 → ((𝐸𝑦) = {𝑧, 𝑁} ↔ (𝐸𝑤) = {𝑧, 𝑁}))
5453riotabidv 5962 . . 3 (𝑦 = 𝑤 → (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁}))
5552, 54f1mpt 5901 . 2 (𝐹:𝐴1-1𝑉 ↔ (∀𝑦𝐴 (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) ∈ 𝑉 ∧ ∀𝑦𝐴𝑤𝐴 ((𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁}) → 𝑦 = 𝑤)))
566, 51, 55sylanbrc 417 1 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → 𝐹:𝐴1-1𝑉)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 713   = wceq 1395  wcel 2200  wral 2508  {crab 2512  Vcvv 2799  {cpr 3667  cmpt 4145  dom cdm 4719  ran crn 4720  1-1wf1 5315  cfv 5318  crio 5959  Vtxcvtx 15821  iEdgciedg 15822  USGraphcusgr 15960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-1o 6568  df-2o 6569  df-er 6688  df-en 6896  df-sub 8327  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-9 9184  df-n0 9378  df-dec 9587  df-ndx 13043  df-slot 13044  df-base 13046  df-edgf 15814  df-vtx 15823  df-iedg 15824  df-edg 15867  df-umgren 15902  df-usgren 15962
This theorem is referenced by:  usgriedgdomord  16031
  Copyright terms: Public domain W3C validator