![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > clelsb3f | GIF version |
Description: Substitution applied to an atomic wff (class version of elsb3 1907). (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) (Revised by Thierry Arnoux, 13-Mar-2017.) |
Ref | Expression |
---|---|
clelsb3f.1 | ⊢ Ⅎ𝑦𝐴 |
Ref | Expression |
---|---|
clelsb3f | ⊢ ([𝑥 / 𝑦]𝑦 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clelsb3f.1 | . . . 4 ⊢ Ⅎ𝑦𝐴 | |
2 | 1 | nfcri 2229 | . . 3 ⊢ Ⅎ𝑦 𝑤 ∈ 𝐴 |
3 | 2 | sbco2 1894 | . 2 ⊢ ([𝑥 / 𝑦][𝑦 / 𝑤]𝑤 ∈ 𝐴 ↔ [𝑥 / 𝑤]𝑤 ∈ 𝐴) |
4 | nfv 1473 | . . . 4 ⊢ Ⅎ𝑤 𝑦 ∈ 𝐴 | |
5 | eleq1w 2155 | . . . 4 ⊢ (𝑤 = 𝑦 → (𝑤 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
6 | 4, 5 | sbie 1728 | . . 3 ⊢ ([𝑦 / 𝑤]𝑤 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) |
7 | 6 | sbbii 1702 | . 2 ⊢ ([𝑥 / 𝑦][𝑦 / 𝑤]𝑤 ∈ 𝐴 ↔ [𝑥 / 𝑦]𝑦 ∈ 𝐴) |
8 | nfv 1473 | . . 3 ⊢ Ⅎ𝑤 𝑥 ∈ 𝐴 | |
9 | eleq1w 2155 | . . 3 ⊢ (𝑤 = 𝑥 → (𝑤 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) | |
10 | 8, 9 | sbie 1728 | . 2 ⊢ ([𝑥 / 𝑤]𝑤 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴) |
11 | 3, 7, 10 | 3bitr3i 209 | 1 ⊢ ([𝑥 / 𝑦]𝑦 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∈ wcel 1445 [wsb 1699 Ⅎwnfc 2222 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 |
This theorem depends on definitions: df-bi 116 df-nf 1402 df-sb 1700 df-cleq 2088 df-clel 2091 df-nfc 2224 |
This theorem is referenced by: rmo3f 2826 |
Copyright terms: Public domain | W3C validator |