![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elsb3 | GIF version |
Description: Substitution applied to an atomic membership wff. (Contributed by NM, 7-Nov-2006.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
Ref | Expression |
---|---|
elsb3 | ⊢ ([𝑥 / 𝑦]𝑦 ∈ 𝑧 ↔ 𝑥 ∈ 𝑧) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1465 | . . . . 5 ⊢ (𝑦 ∈ 𝑧 → ∀𝑤 𝑦 ∈ 𝑧) | |
2 | elequ1 1648 | . . . . 5 ⊢ (𝑤 = 𝑦 → (𝑤 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧)) | |
3 | 1, 2 | sbieh 1721 | . . . 4 ⊢ ([𝑦 / 𝑤]𝑤 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧) |
4 | 3 | sbbii 1696 | . . 3 ⊢ ([𝑥 / 𝑦][𝑦 / 𝑤]𝑤 ∈ 𝑧 ↔ [𝑥 / 𝑦]𝑦 ∈ 𝑧) |
5 | ax-17 1465 | . . . 4 ⊢ (𝑤 ∈ 𝑧 → ∀𝑦 𝑤 ∈ 𝑧) | |
6 | 5 | sbco2h 1887 | . . 3 ⊢ ([𝑥 / 𝑦][𝑦 / 𝑤]𝑤 ∈ 𝑧 ↔ [𝑥 / 𝑤]𝑤 ∈ 𝑧) |
7 | 4, 6 | bitr3i 185 | . 2 ⊢ ([𝑥 / 𝑦]𝑦 ∈ 𝑧 ↔ [𝑥 / 𝑤]𝑤 ∈ 𝑧) |
8 | equsb1 1716 | . . . 4 ⊢ [𝑥 / 𝑤]𝑤 = 𝑥 | |
9 | elequ1 1648 | . . . . 5 ⊢ (𝑤 = 𝑥 → (𝑤 ∈ 𝑧 ↔ 𝑥 ∈ 𝑧)) | |
10 | 9 | sbimi 1695 | . . . 4 ⊢ ([𝑥 / 𝑤]𝑤 = 𝑥 → [𝑥 / 𝑤](𝑤 ∈ 𝑧 ↔ 𝑥 ∈ 𝑧)) |
11 | 8, 10 | ax-mp 7 | . . 3 ⊢ [𝑥 / 𝑤](𝑤 ∈ 𝑧 ↔ 𝑥 ∈ 𝑧) |
12 | sbbi 1882 | . . 3 ⊢ ([𝑥 / 𝑤](𝑤 ∈ 𝑧 ↔ 𝑥 ∈ 𝑧) ↔ ([𝑥 / 𝑤]𝑤 ∈ 𝑧 ↔ [𝑥 / 𝑤]𝑥 ∈ 𝑧)) | |
13 | 11, 12 | mpbi 144 | . 2 ⊢ ([𝑥 / 𝑤]𝑤 ∈ 𝑧 ↔ [𝑥 / 𝑤]𝑥 ∈ 𝑧) |
14 | ax-17 1465 | . . 3 ⊢ (𝑥 ∈ 𝑧 → ∀𝑤 𝑥 ∈ 𝑧) | |
15 | 14 | sbh 1707 | . 2 ⊢ ([𝑥 / 𝑤]𝑥 ∈ 𝑧 ↔ 𝑥 ∈ 𝑧) |
16 | 7, 13, 15 | 3bitri 205 | 1 ⊢ ([𝑥 / 𝑦]𝑦 ∈ 𝑧 ↔ 𝑥 ∈ 𝑧) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 [wsb 1693 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-13 1450 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 |
This theorem depends on definitions: df-bi 116 df-nf 1396 df-sb 1694 |
This theorem is referenced by: cvjust 2084 |
Copyright terms: Public domain | W3C validator |