Step | Hyp | Ref
| Expression |
1 | | bren 6725 |
. 2
⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑔 𝑔:𝐴–1-1-onto→𝐵) |
2 | | bren 6725 |
. 2
⊢ (𝐶 ≈ 𝐷 ↔ ∃ℎ ℎ:𝐶–1-1-onto→𝐷) |
3 | | eeanv 1925 |
. . 3
⊢
(∃𝑔∃ℎ(𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ↔ (∃𝑔 𝑔:𝐴–1-1-onto→𝐵 ∧ ∃ℎ ℎ:𝐶–1-1-onto→𝐷)) |
4 | | f1odm 5446 |
. . . . . . . 8
⊢ (ℎ:𝐶–1-1-onto→𝐷 → dom ℎ = 𝐶) |
5 | | vex 2733 |
. . . . . . . . 9
⊢ ℎ ∈ V |
6 | 5 | dmex 4877 |
. . . . . . . 8
⊢ dom ℎ ∈ V |
7 | 4, 6 | eqeltrrdi 2262 |
. . . . . . 7
⊢ (ℎ:𝐶–1-1-onto→𝐷 → 𝐶 ∈ V) |
8 | | f1odm 5446 |
. . . . . . . 8
⊢ (𝑔:𝐴–1-1-onto→𝐵 → dom 𝑔 = 𝐴) |
9 | | vex 2733 |
. . . . . . . . 9
⊢ 𝑔 ∈ V |
10 | 9 | dmex 4877 |
. . . . . . . 8
⊢ dom 𝑔 ∈ V |
11 | 8, 10 | eqeltrrdi 2262 |
. . . . . . 7
⊢ (𝑔:𝐴–1-1-onto→𝐵 → 𝐴 ∈ V) |
12 | | fnmap 6633 |
. . . . . . . 8
⊢
↑𝑚 Fn (V × V) |
13 | | fnovex 5886 |
. . . . . . . 8
⊢ ((
↑𝑚 Fn (V × V) ∧ 𝐶 ∈ V ∧ 𝐴 ∈ V) → (𝐶 ↑𝑚 𝐴) ∈ V) |
14 | 12, 13 | mp3an1 1319 |
. . . . . . 7
⊢ ((𝐶 ∈ V ∧ 𝐴 ∈ V) → (𝐶 ↑𝑚
𝐴) ∈
V) |
15 | 7, 11, 14 | syl2anr 288 |
. . . . . 6
⊢ ((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) → (𝐶 ↑𝑚 𝐴) ∈ V) |
16 | | f1of 5442 |
. . . . . . . 8
⊢ (𝑓:𝐴–1-1-onto→𝐶 → 𝑓:𝐴⟶𝐶) |
17 | | elmapg 6639 |
. . . . . . . . 9
⊢ ((𝐶 ∈ V ∧ 𝐴 ∈ V) → (𝑓 ∈ (𝐶 ↑𝑚 𝐴) ↔ 𝑓:𝐴⟶𝐶)) |
18 | 7, 11, 17 | syl2anr 288 |
. . . . . . . 8
⊢ ((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) → (𝑓 ∈ (𝐶 ↑𝑚 𝐴) ↔ 𝑓:𝐴⟶𝐶)) |
19 | 16, 18 | syl5ibr 155 |
. . . . . . 7
⊢ ((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) → (𝑓:𝐴–1-1-onto→𝐶 → 𝑓 ∈ (𝐶 ↑𝑚 𝐴))) |
20 | 19 | abssdv 3221 |
. . . . . 6
⊢ ((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) → {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐶} ⊆ (𝐶 ↑𝑚 𝐴)) |
21 | 15, 20 | ssexd 4129 |
. . . . 5
⊢ ((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) → {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐶} ∈ V) |
22 | | f1ofo 5449 |
. . . . . . . . 9
⊢ (ℎ:𝐶–1-1-onto→𝐷 → ℎ:𝐶–onto→𝐷) |
23 | | forn 5423 |
. . . . . . . . 9
⊢ (ℎ:𝐶–onto→𝐷 → ran ℎ = 𝐷) |
24 | 22, 23 | syl 14 |
. . . . . . . 8
⊢ (ℎ:𝐶–1-1-onto→𝐷 → ran ℎ = 𝐷) |
25 | 5 | rnex 4878 |
. . . . . . . 8
⊢ ran ℎ ∈ V |
26 | 24, 25 | eqeltrrdi 2262 |
. . . . . . 7
⊢ (ℎ:𝐶–1-1-onto→𝐷 → 𝐷 ∈ V) |
27 | | f1ofo 5449 |
. . . . . . . . 9
⊢ (𝑔:𝐴–1-1-onto→𝐵 → 𝑔:𝐴–onto→𝐵) |
28 | | forn 5423 |
. . . . . . . . 9
⊢ (𝑔:𝐴–onto→𝐵 → ran 𝑔 = 𝐵) |
29 | 27, 28 | syl 14 |
. . . . . . . 8
⊢ (𝑔:𝐴–1-1-onto→𝐵 → ran 𝑔 = 𝐵) |
30 | 9 | rnex 4878 |
. . . . . . . 8
⊢ ran 𝑔 ∈ V |
31 | 29, 30 | eqeltrrdi 2262 |
. . . . . . 7
⊢ (𝑔:𝐴–1-1-onto→𝐵 → 𝐵 ∈ V) |
32 | | fnovex 5886 |
. . . . . . . 8
⊢ ((
↑𝑚 Fn (V × V) ∧ 𝐷 ∈ V ∧ 𝐵 ∈ V) → (𝐷 ↑𝑚 𝐵) ∈ V) |
33 | 12, 32 | mp3an1 1319 |
. . . . . . 7
⊢ ((𝐷 ∈ V ∧ 𝐵 ∈ V) → (𝐷 ↑𝑚
𝐵) ∈
V) |
34 | 26, 31, 33 | syl2anr 288 |
. . . . . 6
⊢ ((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) → (𝐷 ↑𝑚 𝐵) ∈ V) |
35 | | f1of 5442 |
. . . . . . . 8
⊢ (𝑓:𝐵–1-1-onto→𝐷 → 𝑓:𝐵⟶𝐷) |
36 | | elmapg 6639 |
. . . . . . . . 9
⊢ ((𝐷 ∈ V ∧ 𝐵 ∈ V) → (𝑓 ∈ (𝐷 ↑𝑚 𝐵) ↔ 𝑓:𝐵⟶𝐷)) |
37 | 26, 31, 36 | syl2anr 288 |
. . . . . . . 8
⊢ ((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) → (𝑓 ∈ (𝐷 ↑𝑚 𝐵) ↔ 𝑓:𝐵⟶𝐷)) |
38 | 35, 37 | syl5ibr 155 |
. . . . . . 7
⊢ ((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) → (𝑓:𝐵–1-1-onto→𝐷 → 𝑓 ∈ (𝐷 ↑𝑚 𝐵))) |
39 | 38 | abssdv 3221 |
. . . . . 6
⊢ ((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) → {𝑓 ∣ 𝑓:𝐵–1-1-onto→𝐷} ⊆ (𝐷 ↑𝑚 𝐵)) |
40 | 34, 39 | ssexd 4129 |
. . . . 5
⊢ ((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) → {𝑓 ∣ 𝑓:𝐵–1-1-onto→𝐷} ∈ V) |
41 | | f1oco 5465 |
. . . . . . . . 9
⊢ ((ℎ:𝐶–1-1-onto→𝐷 ∧ 𝑥:𝐴–1-1-onto→𝐶) → (ℎ ∘ 𝑥):𝐴–1-1-onto→𝐷) |
42 | 41 | adantll 473 |
. . . . . . . 8
⊢ (((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ∧ 𝑥:𝐴–1-1-onto→𝐶) → (ℎ ∘ 𝑥):𝐴–1-1-onto→𝐷) |
43 | | f1ocnv 5455 |
. . . . . . . . 9
⊢ (𝑔:𝐴–1-1-onto→𝐵 → ◡𝑔:𝐵–1-1-onto→𝐴) |
44 | 43 | ad2antrr 485 |
. . . . . . . 8
⊢ (((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ∧ 𝑥:𝐴–1-1-onto→𝐶) → ◡𝑔:𝐵–1-1-onto→𝐴) |
45 | | f1oco 5465 |
. . . . . . . 8
⊢ (((ℎ ∘ 𝑥):𝐴–1-1-onto→𝐷 ∧ ◡𝑔:𝐵–1-1-onto→𝐴) → ((ℎ ∘ 𝑥) ∘ ◡𝑔):𝐵–1-1-onto→𝐷) |
46 | 42, 44, 45 | syl2anc 409 |
. . . . . . 7
⊢ (((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ∧ 𝑥:𝐴–1-1-onto→𝐶) → ((ℎ ∘ 𝑥) ∘ ◡𝑔):𝐵–1-1-onto→𝐷) |
47 | 46 | ex 114 |
. . . . . 6
⊢ ((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) → (𝑥:𝐴–1-1-onto→𝐶 → ((ℎ ∘ 𝑥) ∘ ◡𝑔):𝐵–1-1-onto→𝐷)) |
48 | | vex 2733 |
. . . . . . 7
⊢ 𝑥 ∈ V |
49 | | f1oeq1 5431 |
. . . . . . 7
⊢ (𝑓 = 𝑥 → (𝑓:𝐴–1-1-onto→𝐶 ↔ 𝑥:𝐴–1-1-onto→𝐶)) |
50 | 48, 49 | elab 2874 |
. . . . . 6
⊢ (𝑥 ∈ {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐶} ↔ 𝑥:𝐴–1-1-onto→𝐶) |
51 | 5, 48 | coex 5156 |
. . . . . . . 8
⊢ (ℎ ∘ 𝑥) ∈ V |
52 | 9 | cnvex 5149 |
. . . . . . . 8
⊢ ◡𝑔 ∈ V |
53 | 51, 52 | coex 5156 |
. . . . . . 7
⊢ ((ℎ ∘ 𝑥) ∘ ◡𝑔) ∈ V |
54 | | f1oeq1 5431 |
. . . . . . 7
⊢ (𝑓 = ((ℎ ∘ 𝑥) ∘ ◡𝑔) → (𝑓:𝐵–1-1-onto→𝐷 ↔ ((ℎ ∘ 𝑥) ∘ ◡𝑔):𝐵–1-1-onto→𝐷)) |
55 | 53, 54 | elab 2874 |
. . . . . 6
⊢ (((ℎ ∘ 𝑥) ∘ ◡𝑔) ∈ {𝑓 ∣ 𝑓:𝐵–1-1-onto→𝐷} ↔ ((ℎ ∘ 𝑥) ∘ ◡𝑔):𝐵–1-1-onto→𝐷) |
56 | 47, 50, 55 | 3imtr4g 204 |
. . . . 5
⊢ ((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) → (𝑥 ∈ {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐶} → ((ℎ ∘ 𝑥) ∘ ◡𝑔) ∈ {𝑓 ∣ 𝑓:𝐵–1-1-onto→𝐷})) |
57 | | f1ocnv 5455 |
. . . . . . . . 9
⊢ (ℎ:𝐶–1-1-onto→𝐷 → ◡ℎ:𝐷–1-1-onto→𝐶) |
58 | 57 | ad2antlr 486 |
. . . . . . . 8
⊢ (((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ∧ 𝑦:𝐵–1-1-onto→𝐷) → ◡ℎ:𝐷–1-1-onto→𝐶) |
59 | | f1oco 5465 |
. . . . . . . . . 10
⊢ ((𝑦:𝐵–1-1-onto→𝐷 ∧ 𝑔:𝐴–1-1-onto→𝐵) → (𝑦 ∘ 𝑔):𝐴–1-1-onto→𝐷) |
60 | 59 | ancoms 266 |
. . . . . . . . 9
⊢ ((𝑔:𝐴–1-1-onto→𝐵 ∧ 𝑦:𝐵–1-1-onto→𝐷) → (𝑦 ∘ 𝑔):𝐴–1-1-onto→𝐷) |
61 | 60 | adantlr 474 |
. . . . . . . 8
⊢ (((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ∧ 𝑦:𝐵–1-1-onto→𝐷) → (𝑦 ∘ 𝑔):𝐴–1-1-onto→𝐷) |
62 | | f1oco 5465 |
. . . . . . . 8
⊢ ((◡ℎ:𝐷–1-1-onto→𝐶 ∧ (𝑦 ∘ 𝑔):𝐴–1-1-onto→𝐷) → (◡ℎ ∘ (𝑦 ∘ 𝑔)):𝐴–1-1-onto→𝐶) |
63 | 58, 61, 62 | syl2anc 409 |
. . . . . . 7
⊢ (((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ∧ 𝑦:𝐵–1-1-onto→𝐷) → (◡ℎ ∘ (𝑦 ∘ 𝑔)):𝐴–1-1-onto→𝐶) |
64 | 63 | ex 114 |
. . . . . 6
⊢ ((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) → (𝑦:𝐵–1-1-onto→𝐷 → (◡ℎ ∘ (𝑦 ∘ 𝑔)):𝐴–1-1-onto→𝐶)) |
65 | | vex 2733 |
. . . . . . 7
⊢ 𝑦 ∈ V |
66 | | f1oeq1 5431 |
. . . . . . 7
⊢ (𝑓 = 𝑦 → (𝑓:𝐵–1-1-onto→𝐷 ↔ 𝑦:𝐵–1-1-onto→𝐷)) |
67 | 65, 66 | elab 2874 |
. . . . . 6
⊢ (𝑦 ∈ {𝑓 ∣ 𝑓:𝐵–1-1-onto→𝐷} ↔ 𝑦:𝐵–1-1-onto→𝐷) |
68 | 5 | cnvex 5149 |
. . . . . . . 8
⊢ ◡ℎ ∈ V |
69 | 65, 9 | coex 5156 |
. . . . . . . 8
⊢ (𝑦 ∘ 𝑔) ∈ V |
70 | 68, 69 | coex 5156 |
. . . . . . 7
⊢ (◡ℎ ∘ (𝑦 ∘ 𝑔)) ∈ V |
71 | | f1oeq1 5431 |
. . . . . . 7
⊢ (𝑓 = (◡ℎ ∘ (𝑦 ∘ 𝑔)) → (𝑓:𝐴–1-1-onto→𝐶 ↔ (◡ℎ ∘ (𝑦 ∘ 𝑔)):𝐴–1-1-onto→𝐶)) |
72 | 70, 71 | elab 2874 |
. . . . . 6
⊢ ((◡ℎ ∘ (𝑦 ∘ 𝑔)) ∈ {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐶} ↔ (◡ℎ ∘ (𝑦 ∘ 𝑔)):𝐴–1-1-onto→𝐶) |
73 | 64, 67, 72 | 3imtr4g 204 |
. . . . 5
⊢ ((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) → (𝑦 ∈ {𝑓 ∣ 𝑓:𝐵–1-1-onto→𝐷} → (◡ℎ ∘ (𝑦 ∘ 𝑔)) ∈ {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐶})) |
74 | 50, 67 | anbi12i 457 |
. . . . . 6
⊢ ((𝑥 ∈ {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐶} ∧ 𝑦 ∈ {𝑓 ∣ 𝑓:𝐵–1-1-onto→𝐷}) ↔ (𝑥:𝐴–1-1-onto→𝐶 ∧ 𝑦:𝐵–1-1-onto→𝐷)) |
75 | | coass 5129 |
. . . . . . . . . . 11
⊢ (((ℎ ∘ 𝑥) ∘ ◡𝑔) ∘ 𝑔) = ((ℎ ∘ 𝑥) ∘ (◡𝑔 ∘ 𝑔)) |
76 | | f1ococnv1 5471 |
. . . . . . . . . . . . . 14
⊢ (𝑔:𝐴–1-1-onto→𝐵 → (◡𝑔 ∘ 𝑔) = ( I ↾ 𝐴)) |
77 | 76 | ad2antrr 485 |
. . . . . . . . . . . . 13
⊢ (((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐴–1-1-onto→𝐶 ∧ 𝑦:𝐵–1-1-onto→𝐷)) → (◡𝑔 ∘ 𝑔) = ( I ↾ 𝐴)) |
78 | 77 | coeq2d 4773 |
. . . . . . . . . . . 12
⊢ (((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐴–1-1-onto→𝐶 ∧ 𝑦:𝐵–1-1-onto→𝐷)) → ((ℎ ∘ 𝑥) ∘ (◡𝑔 ∘ 𝑔)) = ((ℎ ∘ 𝑥) ∘ ( I ↾ 𝐴))) |
79 | 42 | adantrr 476 |
. . . . . . . . . . . . 13
⊢ (((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐴–1-1-onto→𝐶 ∧ 𝑦:𝐵–1-1-onto→𝐷)) → (ℎ ∘ 𝑥):𝐴–1-1-onto→𝐷) |
80 | | f1of 5442 |
. . . . . . . . . . . . 13
⊢ ((ℎ ∘ 𝑥):𝐴–1-1-onto→𝐷 → (ℎ ∘ 𝑥):𝐴⟶𝐷) |
81 | | fcoi1 5378 |
. . . . . . . . . . . . 13
⊢ ((ℎ ∘ 𝑥):𝐴⟶𝐷 → ((ℎ ∘ 𝑥) ∘ ( I ↾ 𝐴)) = (ℎ ∘ 𝑥)) |
82 | 79, 80, 81 | 3syl 17 |
. . . . . . . . . . . 12
⊢ (((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐴–1-1-onto→𝐶 ∧ 𝑦:𝐵–1-1-onto→𝐷)) → ((ℎ ∘ 𝑥) ∘ ( I ↾ 𝐴)) = (ℎ ∘ 𝑥)) |
83 | 78, 82 | eqtrd 2203 |
. . . . . . . . . . 11
⊢ (((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐴–1-1-onto→𝐶 ∧ 𝑦:𝐵–1-1-onto→𝐷)) → ((ℎ ∘ 𝑥) ∘ (◡𝑔 ∘ 𝑔)) = (ℎ ∘ 𝑥)) |
84 | 75, 83 | eqtr2id 2216 |
. . . . . . . . . 10
⊢ (((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐴–1-1-onto→𝐶 ∧ 𝑦:𝐵–1-1-onto→𝐷)) → (ℎ ∘ 𝑥) = (((ℎ ∘ 𝑥) ∘ ◡𝑔) ∘ 𝑔)) |
85 | | coass 5129 |
. . . . . . . . . . 11
⊢ ((ℎ ∘ ◡ℎ) ∘ (𝑦 ∘ 𝑔)) = (ℎ ∘ (◡ℎ ∘ (𝑦 ∘ 𝑔))) |
86 | | f1ococnv2 5469 |
. . . . . . . . . . . . . 14
⊢ (ℎ:𝐶–1-1-onto→𝐷 → (ℎ ∘ ◡ℎ) = ( I ↾ 𝐷)) |
87 | 86 | ad2antlr 486 |
. . . . . . . . . . . . 13
⊢ (((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐴–1-1-onto→𝐶 ∧ 𝑦:𝐵–1-1-onto→𝐷)) → (ℎ ∘ ◡ℎ) = ( I ↾ 𝐷)) |
88 | 87 | coeq1d 4772 |
. . . . . . . . . . . 12
⊢ (((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐴–1-1-onto→𝐶 ∧ 𝑦:𝐵–1-1-onto→𝐷)) → ((ℎ ∘ ◡ℎ) ∘ (𝑦 ∘ 𝑔)) = (( I ↾ 𝐷) ∘ (𝑦 ∘ 𝑔))) |
89 | 61 | adantrl 475 |
. . . . . . . . . . . . 13
⊢ (((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐴–1-1-onto→𝐶 ∧ 𝑦:𝐵–1-1-onto→𝐷)) → (𝑦 ∘ 𝑔):𝐴–1-1-onto→𝐷) |
90 | | f1of 5442 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∘ 𝑔):𝐴–1-1-onto→𝐷 → (𝑦 ∘ 𝑔):𝐴⟶𝐷) |
91 | | fcoi2 5379 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∘ 𝑔):𝐴⟶𝐷 → (( I ↾ 𝐷) ∘ (𝑦 ∘ 𝑔)) = (𝑦 ∘ 𝑔)) |
92 | 89, 90, 91 | 3syl 17 |
. . . . . . . . . . . 12
⊢ (((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐴–1-1-onto→𝐶 ∧ 𝑦:𝐵–1-1-onto→𝐷)) → (( I ↾ 𝐷) ∘ (𝑦 ∘ 𝑔)) = (𝑦 ∘ 𝑔)) |
93 | 88, 92 | eqtrd 2203 |
. . . . . . . . . . 11
⊢ (((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐴–1-1-onto→𝐶 ∧ 𝑦:𝐵–1-1-onto→𝐷)) → ((ℎ ∘ ◡ℎ) ∘ (𝑦 ∘ 𝑔)) = (𝑦 ∘ 𝑔)) |
94 | 85, 93 | eqtr3id 2217 |
. . . . . . . . . 10
⊢ (((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐴–1-1-onto→𝐶 ∧ 𝑦:𝐵–1-1-onto→𝐷)) → (ℎ ∘ (◡ℎ ∘ (𝑦 ∘ 𝑔))) = (𝑦 ∘ 𝑔)) |
95 | 84, 94 | eqeq12d 2185 |
. . . . . . . . 9
⊢ (((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐴–1-1-onto→𝐶 ∧ 𝑦:𝐵–1-1-onto→𝐷)) → ((ℎ ∘ 𝑥) = (ℎ ∘ (◡ℎ ∘ (𝑦 ∘ 𝑔))) ↔ (((ℎ ∘ 𝑥) ∘ ◡𝑔) ∘ 𝑔) = (𝑦 ∘ 𝑔))) |
96 | | eqcom 2172 |
. . . . . . . . 9
⊢ ((((ℎ ∘ 𝑥) ∘ ◡𝑔) ∘ 𝑔) = (𝑦 ∘ 𝑔) ↔ (𝑦 ∘ 𝑔) = (((ℎ ∘ 𝑥) ∘ ◡𝑔) ∘ 𝑔)) |
97 | 95, 96 | bitrdi 195 |
. . . . . . . 8
⊢ (((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐴–1-1-onto→𝐶 ∧ 𝑦:𝐵–1-1-onto→𝐷)) → ((ℎ ∘ 𝑥) = (ℎ ∘ (◡ℎ ∘ (𝑦 ∘ 𝑔))) ↔ (𝑦 ∘ 𝑔) = (((ℎ ∘ 𝑥) ∘ ◡𝑔) ∘ 𝑔))) |
98 | | f1of1 5441 |
. . . . . . . . . 10
⊢ (ℎ:𝐶–1-1-onto→𝐷 → ℎ:𝐶–1-1→𝐷) |
99 | 98 | ad2antlr 486 |
. . . . . . . . 9
⊢ (((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐴–1-1-onto→𝐶 ∧ 𝑦:𝐵–1-1-onto→𝐷)) → ℎ:𝐶–1-1→𝐷) |
100 | | f1of 5442 |
. . . . . . . . . 10
⊢ (𝑥:𝐴–1-1-onto→𝐶 → 𝑥:𝐴⟶𝐶) |
101 | 100 | ad2antrl 487 |
. . . . . . . . 9
⊢ (((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐴–1-1-onto→𝐶 ∧ 𝑦:𝐵–1-1-onto→𝐷)) → 𝑥:𝐴⟶𝐶) |
102 | 63 | adantrl 475 |
. . . . . . . . . 10
⊢ (((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐴–1-1-onto→𝐶 ∧ 𝑦:𝐵–1-1-onto→𝐷)) → (◡ℎ ∘ (𝑦 ∘ 𝑔)):𝐴–1-1-onto→𝐶) |
103 | | f1of 5442 |
. . . . . . . . . 10
⊢ ((◡ℎ ∘ (𝑦 ∘ 𝑔)):𝐴–1-1-onto→𝐶 → (◡ℎ ∘ (𝑦 ∘ 𝑔)):𝐴⟶𝐶) |
104 | 102, 103 | syl 14 |
. . . . . . . . 9
⊢ (((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐴–1-1-onto→𝐶 ∧ 𝑦:𝐵–1-1-onto→𝐷)) → (◡ℎ ∘ (𝑦 ∘ 𝑔)):𝐴⟶𝐶) |
105 | | cocan1 5766 |
. . . . . . . . 9
⊢ ((ℎ:𝐶–1-1→𝐷 ∧ 𝑥:𝐴⟶𝐶 ∧ (◡ℎ ∘ (𝑦 ∘ 𝑔)):𝐴⟶𝐶) → ((ℎ ∘ 𝑥) = (ℎ ∘ (◡ℎ ∘ (𝑦 ∘ 𝑔))) ↔ 𝑥 = (◡ℎ ∘ (𝑦 ∘ 𝑔)))) |
106 | 99, 101, 104, 105 | syl3anc 1233 |
. . . . . . . 8
⊢ (((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐴–1-1-onto→𝐶 ∧ 𝑦:𝐵–1-1-onto→𝐷)) → ((ℎ ∘ 𝑥) = (ℎ ∘ (◡ℎ ∘ (𝑦 ∘ 𝑔))) ↔ 𝑥 = (◡ℎ ∘ (𝑦 ∘ 𝑔)))) |
107 | 27 | ad2antrr 485 |
. . . . . . . . 9
⊢ (((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐴–1-1-onto→𝐶 ∧ 𝑦:𝐵–1-1-onto→𝐷)) → 𝑔:𝐴–onto→𝐵) |
108 | | f1ofn 5443 |
. . . . . . . . . 10
⊢ (𝑦:𝐵–1-1-onto→𝐷 → 𝑦 Fn 𝐵) |
109 | 108 | ad2antll 488 |
. . . . . . . . 9
⊢ (((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐴–1-1-onto→𝐶 ∧ 𝑦:𝐵–1-1-onto→𝐷)) → 𝑦 Fn 𝐵) |
110 | 46 | adantrr 476 |
. . . . . . . . . 10
⊢ (((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐴–1-1-onto→𝐶 ∧ 𝑦:𝐵–1-1-onto→𝐷)) → ((ℎ ∘ 𝑥) ∘ ◡𝑔):𝐵–1-1-onto→𝐷) |
111 | | f1ofn 5443 |
. . . . . . . . . 10
⊢ (((ℎ ∘ 𝑥) ∘ ◡𝑔):𝐵–1-1-onto→𝐷 → ((ℎ ∘ 𝑥) ∘ ◡𝑔) Fn 𝐵) |
112 | 110, 111 | syl 14 |
. . . . . . . . 9
⊢ (((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐴–1-1-onto→𝐶 ∧ 𝑦:𝐵–1-1-onto→𝐷)) → ((ℎ ∘ 𝑥) ∘ ◡𝑔) Fn 𝐵) |
113 | | cocan2 5767 |
. . . . . . . . 9
⊢ ((𝑔:𝐴–onto→𝐵 ∧ 𝑦 Fn 𝐵 ∧ ((ℎ ∘ 𝑥) ∘ ◡𝑔) Fn 𝐵) → ((𝑦 ∘ 𝑔) = (((ℎ ∘ 𝑥) ∘ ◡𝑔) ∘ 𝑔) ↔ 𝑦 = ((ℎ ∘ 𝑥) ∘ ◡𝑔))) |
114 | 107, 109,
112, 113 | syl3anc 1233 |
. . . . . . . 8
⊢ (((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐴–1-1-onto→𝐶 ∧ 𝑦:𝐵–1-1-onto→𝐷)) → ((𝑦 ∘ 𝑔) = (((ℎ ∘ 𝑥) ∘ ◡𝑔) ∘ 𝑔) ↔ 𝑦 = ((ℎ ∘ 𝑥) ∘ ◡𝑔))) |
115 | 97, 106, 114 | 3bitr3d 217 |
. . . . . . 7
⊢ (((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐴–1-1-onto→𝐶 ∧ 𝑦:𝐵–1-1-onto→𝐷)) → (𝑥 = (◡ℎ ∘ (𝑦 ∘ 𝑔)) ↔ 𝑦 = ((ℎ ∘ 𝑥) ∘ ◡𝑔))) |
116 | 115 | ex 114 |
. . . . . 6
⊢ ((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) → ((𝑥:𝐴–1-1-onto→𝐶 ∧ 𝑦:𝐵–1-1-onto→𝐷) → (𝑥 = (◡ℎ ∘ (𝑦 ∘ 𝑔)) ↔ 𝑦 = ((ℎ ∘ 𝑥) ∘ ◡𝑔)))) |
117 | 74, 116 | syl5bi 151 |
. . . . 5
⊢ ((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) → ((𝑥 ∈ {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐶} ∧ 𝑦 ∈ {𝑓 ∣ 𝑓:𝐵–1-1-onto→𝐷}) → (𝑥 = (◡ℎ ∘ (𝑦 ∘ 𝑔)) ↔ 𝑦 = ((ℎ ∘ 𝑥) ∘ ◡𝑔)))) |
118 | 21, 40, 56, 73, 117 | en3d 6747 |
. . . 4
⊢ ((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) → {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐶} ≈ {𝑓 ∣ 𝑓:𝐵–1-1-onto→𝐷}) |
119 | 118 | exlimivv 1889 |
. . 3
⊢
(∃𝑔∃ℎ(𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) → {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐶} ≈ {𝑓 ∣ 𝑓:𝐵–1-1-onto→𝐷}) |
120 | 3, 119 | sylbir 134 |
. 2
⊢
((∃𝑔 𝑔:𝐴–1-1-onto→𝐵 ∧ ∃ℎ ℎ:𝐶–1-1-onto→𝐷) → {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐶} ≈ {𝑓 ∣ 𝑓:𝐵–1-1-onto→𝐷}) |
121 | 1, 2, 120 | syl2anb 289 |
1
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐶} ≈ {𝑓 ∣ 𝑓:𝐵–1-1-onto→𝐷}) |