![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > csbeq1a | GIF version |
Description: Equality theorem for proper substitution into a class. (Contributed by NM, 10-Nov-2005.) |
Ref | Expression |
---|---|
csbeq1a | ⊢ (𝑥 = 𝐴 → 𝐵 = ⦋𝐴 / 𝑥⦌𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbid 2976 | . 2 ⊢ ⦋𝑥 / 𝑥⦌𝐵 = 𝐵 | |
2 | csbeq1 2972 | . 2 ⊢ (𝑥 = 𝐴 → ⦋𝑥 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵) | |
3 | 1, 2 | syl5eqr 2159 | 1 ⊢ (𝑥 = 𝐴 → 𝐵 = ⦋𝐴 / 𝑥⦌𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1312 ⦋csb 2969 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-11 1465 ax-4 1468 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 |
This theorem depends on definitions: df-bi 116 df-tru 1315 df-nf 1418 df-sb 1717 df-clab 2100 df-cleq 2106 df-clel 2109 df-sbc 2877 df-csb 2970 |
This theorem is referenced by: csbhypf 3002 csbiebt 3003 sbcnestgf 3015 cbvralcsf 3026 cbvrexcsf 3027 cbvreucsf 3028 cbvrabcsf 3029 csbing 3247 disjnims 3885 disjiun 3888 sbcbrg 3942 moop2 4131 pofun 4192 eusvnf 4332 opeliunxp 4552 elrnmpt1 4748 resmptf 4825 csbima12g 4856 fvmpts 5451 fvmpt2 5456 mptfvex 5458 fmptco 5538 fmptcof 5539 fmptcos 5540 elabrex 5611 fliftfuns 5651 csbov123g 5761 ovmpos 5846 csbopeq1a 6037 mpomptsx 6046 dmmpossx 6048 fmpox 6049 mpofvex 6052 fmpoco 6064 disjxp1 6084 eqerlem 6411 qliftfuns 6464 mptelixpg 6579 xpf1o 6688 iunfidisj 6783 seq3f1olemstep 10160 seq3f1olemp 10161 sumeq2 11013 sumfct 11028 sumrbdclem 11030 summodclem3 11034 summodclem2a 11035 zsumdc 11038 fsumgcl 11040 fsum3 11041 isumss 11045 isumss2 11047 fsum3cvg2 11048 fsumzcl2 11059 fsumsplitf 11062 sumsnf 11063 sumsns 11069 fsumsplitsnun 11073 fsum2dlemstep 11088 fsumcnv 11091 fisumcom2 11092 fsumshftm 11099 fisum0diag2 11101 fsummulc2 11102 fsum00 11116 fsumabs 11119 fsumrelem 11125 fsumiun 11131 isumshft 11144 mertenslem2 11190 ctiunctlemudc 11786 ctiunctlemf 11787 iuncld 12120 fsumcncntop 12535 limcmpted 12581 |
Copyright terms: Public domain | W3C validator |