ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmpt2 GIF version

Theorem fvmpt2 5591
Description: Value of a function given by the maps-to notation. (Contributed by FL, 21-Jun-2010.)
Hypothesis
Ref Expression
fvmpt2.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
fvmpt2 ((𝑥𝐴𝐵𝐶) → (𝐹𝑥) = 𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐹(𝑥)

Proof of Theorem fvmpt2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3058 . . 3 (𝑦 = 𝑥𝑦 / 𝑥𝐵 = 𝑥 / 𝑥𝐵)
2 csbid 3063 . . 3 𝑥 / 𝑥𝐵 = 𝐵
31, 2eqtrdi 2224 . 2 (𝑦 = 𝑥𝑦 / 𝑥𝐵 = 𝐵)
4 fvmpt2.1 . . 3 𝐹 = (𝑥𝐴𝐵)
5 nfcv 2317 . . . 4 𝑦𝐵
6 nfcsb1v 3088 . . . 4 𝑥𝑦 / 𝑥𝐵
7 csbeq1a 3064 . . . 4 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
85, 6, 7cbvmpt 4093 . . 3 (𝑥𝐴𝐵) = (𝑦𝐴𝑦 / 𝑥𝐵)
94, 8eqtri 2196 . 2 𝐹 = (𝑦𝐴𝑦 / 𝑥𝐵)
103, 9fvmptg 5584 1 ((𝑥𝐴𝐵𝐶) → (𝐹𝑥) = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2146  csb 3055  cmpt 4059  cfv 5208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-sbc 2961  df-csb 3056  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-iota 5170  df-fun 5210  df-fv 5216
This theorem is referenced by:  fvmptssdm  5592  fvmpt2d  5594  fvmptdf  5595  mpteqb  5598  fvmptt  5599  fvmptf  5600  fnmptfvd  5612  ralrnmpt  5650  rexrnmpt  5651  fmptco  5674  f1mpt  5762  offval2  6088  ofrfval2  6089  mptelixpg  6724  dom2lem  6762  mapxpen  6838  xpmapenlem  6839  mkvprop  7146  cc2lem  7240  cc3  7242  fsum3cvg  11352  summodclem2a  11355  fsumf1o  11364  fsum3cvg2  11368  fsumadd  11380  isummulc2  11400  fproddccvg  11546  fprodf1o  11562  txcnp  13340  cnmpt11  13352  cnmpt1t  13354
  Copyright terms: Public domain W3C validator