ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmpt2 GIF version

Theorem fvmpt2 5720
Description: Value of a function given by the maps-to notation. (Contributed by FL, 21-Jun-2010.)
Hypothesis
Ref Expression
fvmpt2.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
fvmpt2 ((𝑥𝐴𝐵𝐶) → (𝐹𝑥) = 𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐹(𝑥)

Proof of Theorem fvmpt2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3127 . . 3 (𝑦 = 𝑥𝑦 / 𝑥𝐵 = 𝑥 / 𝑥𝐵)
2 csbid 3132 . . 3 𝑥 / 𝑥𝐵 = 𝐵
31, 2eqtrdi 2278 . 2 (𝑦 = 𝑥𝑦 / 𝑥𝐵 = 𝐵)
4 fvmpt2.1 . . 3 𝐹 = (𝑥𝐴𝐵)
5 nfcv 2372 . . . 4 𝑦𝐵
6 nfcsb1v 3157 . . . 4 𝑥𝑦 / 𝑥𝐵
7 csbeq1a 3133 . . . 4 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
85, 6, 7cbvmpt 4179 . . 3 (𝑥𝐴𝐵) = (𝑦𝐴𝑦 / 𝑥𝐵)
94, 8eqtri 2250 . 2 𝐹 = (𝑦𝐴𝑦 / 𝑥𝐵)
103, 9fvmptg 5712 1 ((𝑥𝐴𝐵𝐶) → (𝐹𝑥) = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  csb 3124  cmpt 4145  cfv 5318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326
This theorem is referenced by:  fvmptssdm  5721  fvmpt2d  5723  fvmptdf  5724  mpteqb  5727  fvmptt  5728  fvmptf  5729  fnmptfvd  5741  ralrnmpt  5779  rexrnmpt  5780  fmptco  5803  f1mpt  5901  offval2  6240  ofrfval2  6241  mptelixpg  6889  dom2lem  6931  mapxpen  7017  xpmapenlem  7018  mkvprop  7333  cc2lem  7460  cc3  7462  fsum3cvg  11897  summodclem2a  11900  fsumf1o  11909  fsum3cvg2  11913  fsumadd  11925  isummulc2  11945  fproddccvg  12091  fprodf1o  12107  prdsbas3  13328  txcnp  14953  cnmpt11  14965  cnmpt1t  14967  elplyd  15423  dvply1  15447  lgseisenlem2  15758
  Copyright terms: Public domain W3C validator