| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvmpt2 | GIF version | ||
| Description: Value of a function given by the maps-to notation. (Contributed by FL, 21-Jun-2010.) |
| Ref | Expression |
|---|---|
| fvmpt2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| fvmpt2 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐹‘𝑥) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1 3107 | . . 3 ⊢ (𝑦 = 𝑥 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝑥 / 𝑥⦌𝐵) | |
| 2 | csbid 3112 | . . 3 ⊢ ⦋𝑥 / 𝑥⦌𝐵 = 𝐵 | |
| 3 | 1, 2 | eqtrdi 2258 | . 2 ⊢ (𝑦 = 𝑥 → ⦋𝑦 / 𝑥⦌𝐵 = 𝐵) |
| 4 | fvmpt2.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 5 | nfcv 2352 | . . . 4 ⊢ Ⅎ𝑦𝐵 | |
| 6 | nfcsb1v 3137 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
| 7 | csbeq1a 3113 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
| 8 | 5, 6, 7 | cbvmpt 4158 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐵) |
| 9 | 4, 8 | eqtri 2230 | . 2 ⊢ 𝐹 = (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐵) |
| 10 | 3, 9 | fvmptg 5683 | 1 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐹‘𝑥) = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1375 ∈ wcel 2180 ⦋csb 3104 ↦ cmpt 4124 ‘cfv 5294 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-sbc 3009 df-csb 3105 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-iota 5254 df-fun 5296 df-fv 5302 |
| This theorem is referenced by: fvmptssdm 5692 fvmpt2d 5694 fvmptdf 5695 mpteqb 5698 fvmptt 5699 fvmptf 5700 fnmptfvd 5712 ralrnmpt 5750 rexrnmpt 5751 fmptco 5774 f1mpt 5868 offval2 6204 ofrfval2 6205 mptelixpg 6851 dom2lem 6893 mapxpen 6977 xpmapenlem 6978 mkvprop 7293 cc2lem 7420 cc3 7422 fsum3cvg 11855 summodclem2a 11858 fsumf1o 11867 fsum3cvg2 11871 fsumadd 11883 isummulc2 11903 fproddccvg 12049 fprodf1o 12065 prdsbas3 13286 txcnp 14910 cnmpt11 14922 cnmpt1t 14924 elplyd 15380 dvply1 15404 lgseisenlem2 15715 |
| Copyright terms: Public domain | W3C validator |