ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmpt2 GIF version

Theorem fvmpt2 5691
Description: Value of a function given by the maps-to notation. (Contributed by FL, 21-Jun-2010.)
Hypothesis
Ref Expression
fvmpt2.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
fvmpt2 ((𝑥𝐴𝐵𝐶) → (𝐹𝑥) = 𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐹(𝑥)

Proof of Theorem fvmpt2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3107 . . 3 (𝑦 = 𝑥𝑦 / 𝑥𝐵 = 𝑥 / 𝑥𝐵)
2 csbid 3112 . . 3 𝑥 / 𝑥𝐵 = 𝐵
31, 2eqtrdi 2258 . 2 (𝑦 = 𝑥𝑦 / 𝑥𝐵 = 𝐵)
4 fvmpt2.1 . . 3 𝐹 = (𝑥𝐴𝐵)
5 nfcv 2352 . . . 4 𝑦𝐵
6 nfcsb1v 3137 . . . 4 𝑥𝑦 / 𝑥𝐵
7 csbeq1a 3113 . . . 4 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
85, 6, 7cbvmpt 4158 . . 3 (𝑥𝐴𝐵) = (𝑦𝐴𝑦 / 𝑥𝐵)
94, 8eqtri 2230 . 2 𝐹 = (𝑦𝐴𝑦 / 𝑥𝐵)
103, 9fvmptg 5683 1 ((𝑥𝐴𝐵𝐶) → (𝐹𝑥) = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1375  wcel 2180  csb 3104  cmpt 4124  cfv 5294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-sbc 3009  df-csb 3105  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-iota 5254  df-fun 5296  df-fv 5302
This theorem is referenced by:  fvmptssdm  5692  fvmpt2d  5694  fvmptdf  5695  mpteqb  5698  fvmptt  5699  fvmptf  5700  fnmptfvd  5712  ralrnmpt  5750  rexrnmpt  5751  fmptco  5774  f1mpt  5868  offval2  6204  ofrfval2  6205  mptelixpg  6851  dom2lem  6893  mapxpen  6977  xpmapenlem  6978  mkvprop  7293  cc2lem  7420  cc3  7422  fsum3cvg  11855  summodclem2a  11858  fsumf1o  11867  fsum3cvg2  11871  fsumadd  11883  isummulc2  11903  fproddccvg  12049  fprodf1o  12065  prdsbas3  13286  txcnp  14910  cnmpt11  14922  cnmpt1t  14924  elplyd  15380  dvply1  15404  lgseisenlem2  15715
  Copyright terms: Public domain W3C validator