![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fvmpt2 | GIF version |
Description: Value of a function given by the maps-to notation. (Contributed by FL, 21-Jun-2010.) |
Ref | Expression |
---|---|
fvmpt2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
fvmpt2 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐹‘𝑥) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq1 3084 | . . 3 ⊢ (𝑦 = 𝑥 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝑥 / 𝑥⦌𝐵) | |
2 | csbid 3089 | . . 3 ⊢ ⦋𝑥 / 𝑥⦌𝐵 = 𝐵 | |
3 | 1, 2 | eqtrdi 2242 | . 2 ⊢ (𝑦 = 𝑥 → ⦋𝑦 / 𝑥⦌𝐵 = 𝐵) |
4 | fvmpt2.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
5 | nfcv 2336 | . . . 4 ⊢ Ⅎ𝑦𝐵 | |
6 | nfcsb1v 3114 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
7 | csbeq1a 3090 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
8 | 5, 6, 7 | cbvmpt 4125 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐵) |
9 | 4, 8 | eqtri 2214 | . 2 ⊢ 𝐹 = (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐵) |
10 | 3, 9 | fvmptg 5634 | 1 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐹‘𝑥) = 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ⦋csb 3081 ↦ cmpt 4091 ‘cfv 5255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2987 df-csb 3082 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 |
This theorem is referenced by: fvmptssdm 5643 fvmpt2d 5645 fvmptdf 5646 mpteqb 5649 fvmptt 5650 fvmptf 5651 fnmptfvd 5663 ralrnmpt 5701 rexrnmpt 5702 fmptco 5725 f1mpt 5815 offval2 6148 ofrfval2 6149 mptelixpg 6790 dom2lem 6828 mapxpen 6906 xpmapenlem 6907 mkvprop 7219 cc2lem 7328 cc3 7330 fsum3cvg 11524 summodclem2a 11527 fsumf1o 11536 fsum3cvg2 11540 fsumadd 11552 isummulc2 11572 fproddccvg 11718 fprodf1o 11734 txcnp 14450 cnmpt11 14462 cnmpt1t 14464 elplyd 14920 dvply1 14943 lgseisenlem2 15228 |
Copyright terms: Public domain | W3C validator |