ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gen2 GIF version

Theorem gen2 1450
Description: Generalization applied twice. (Contributed by NM, 30-Apr-1998.)
Hypothesis
Ref Expression
gen2.1 𝜑
Assertion
Ref Expression
gen2 𝑥𝑦𝜑

Proof of Theorem gen2
StepHypRef Expression
1 gen2.1 . . 3 𝜑
21ax-gen 1449 . 2 𝑦𝜑
32ax-gen 1449 1 𝑥𝑦𝜑
Colors of variables: wff set class
Syntax hints:  wal 1351
This theorem was proved from axioms:  ax-gen 1449
This theorem is referenced by:  euequ1  2121  bm1.1  2162  vtocl3  2794  eueq  2909  csbie2  3107  moop2  4252  eusv1  4453  ordtriexmidlem  4519  ordtri2or2exmidlem  4526  onsucelsucexmidlem  4529  ordom  4607  mosubop  4693  eqrelriv  4720  opabid2  4759  xpidtr  5020  funinsn  5266  funoprab  5975  mpofun  5977  fnoprab  5978  elovmpo  6072  mpofvexi  6207  tfrlem7  6318  oaexg  6449  omexg  6452  oeiexg  6454  infiexmid  6877  domfiexmid  6878  climeu  11304
  Copyright terms: Public domain W3C validator