ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gen2 GIF version

Theorem gen2 1438
Description: Generalization applied twice. (Contributed by NM, 30-Apr-1998.)
Hypothesis
Ref Expression
gen2.1 𝜑
Assertion
Ref Expression
gen2 𝑥𝑦𝜑

Proof of Theorem gen2
StepHypRef Expression
1 gen2.1 . . 3 𝜑
21ax-gen 1437 . 2 𝑦𝜑
32ax-gen 1437 1 𝑥𝑦𝜑
Colors of variables: wff set class
Syntax hints:  wal 1341
This theorem was proved from axioms:  ax-gen 1437
This theorem is referenced by:  euequ1  2109  bm1.1  2150  vtocl3  2782  eueq  2897  csbie2  3094  moop2  4229  eusv1  4430  ordtriexmidlem  4496  ordtri2or2exmidlem  4503  onsucelsucexmidlem  4506  ordom  4584  mosubop  4670  eqrelriv  4697  opabid2  4735  xpidtr  4994  funinsn  5237  funoprab  5942  mpofun  5944  fnoprab  5945  elovmpo  6039  mpofvexi  6174  tfrlem7  6285  oaexg  6416  omexg  6419  oeiexg  6421  infiexmid  6843  domfiexmid  6844  climeu  11237
  Copyright terms: Public domain W3C validator