ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumcnv GIF version

Theorem fsumcnv 11459
Description: Transform a region of summation by using the converse operation. (Contributed by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
fsumcnv.1 (𝑥 = ⟨𝑗, 𝑘⟩ → 𝐵 = 𝐷)
fsumcnv.2 (𝑦 = ⟨𝑘, 𝑗⟩ → 𝐶 = 𝐷)
fsumcnv.3 (𝜑𝐴 ∈ Fin)
fsumcnv.4 (𝜑 → Rel 𝐴)
fsumcnv.5 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
fsumcnv (𝜑 → Σ𝑥𝐴 𝐵 = Σ𝑦 𝐴𝐶)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑗,𝑘,𝑦,𝐵   𝑥,𝑗,𝐶,𝑘   𝜑,𝑥,𝑦   𝑥,𝐷,𝑦
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝐴(𝑗,𝑘)   𝐵(𝑥)   𝐶(𝑦)   𝐷(𝑗,𝑘)

Proof of Theorem fsumcnv
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 csbeq1a 3078 . . . 4 (𝑥 = ⟨(2nd𝑦), (1st𝑦)⟩ → 𝐵 = ⟨(2nd𝑦), (1st𝑦)⟩ / 𝑥𝐵)
2 2ndexg 6183 . . . . . 6 (𝑦 ∈ V → (2nd𝑦) ∈ V)
32elv 2753 . . . . 5 (2nd𝑦) ∈ V
4 1stexg 6182 . . . . . 6 (𝑦 ∈ V → (1st𝑦) ∈ V)
54elv 2753 . . . . 5 (1st𝑦) ∈ V
6 vex 2752 . . . . . . . 8 𝑗 ∈ V
7 vex 2752 . . . . . . . 8 𝑘 ∈ V
86, 7opex 4241 . . . . . . 7 𝑗, 𝑘⟩ ∈ V
9 fsumcnv.1 . . . . . . 7 (𝑥 = ⟨𝑗, 𝑘⟩ → 𝐵 = 𝐷)
108, 9csbie 3114 . . . . . 6 𝑗, 𝑘⟩ / 𝑥𝐵 = 𝐷
11 opeq12 3792 . . . . . . 7 ((𝑗 = (2nd𝑦) ∧ 𝑘 = (1st𝑦)) → ⟨𝑗, 𝑘⟩ = ⟨(2nd𝑦), (1st𝑦)⟩)
1211csbeq1d 3076 . . . . . 6 ((𝑗 = (2nd𝑦) ∧ 𝑘 = (1st𝑦)) → 𝑗, 𝑘⟩ / 𝑥𝐵 = ⟨(2nd𝑦), (1st𝑦)⟩ / 𝑥𝐵)
1310, 12eqtr3id 2234 . . . . 5 ((𝑗 = (2nd𝑦) ∧ 𝑘 = (1st𝑦)) → 𝐷 = ⟨(2nd𝑦), (1st𝑦)⟩ / 𝑥𝐵)
143, 5, 13csbie2 3118 . . . 4 (2nd𝑦) / 𝑗(1st𝑦) / 𝑘𝐷 = ⟨(2nd𝑦), (1st𝑦)⟩ / 𝑥𝐵
151, 14eqtr4di 2238 . . 3 (𝑥 = ⟨(2nd𝑦), (1st𝑦)⟩ → 𝐵 = (2nd𝑦) / 𝑗(1st𝑦) / 𝑘𝐷)
16 fsumcnv.4 . . . 4 (𝜑 → Rel 𝐴)
17 fsumcnv.3 . . . 4 (𝜑𝐴 ∈ Fin)
18 relcnvfi 6954 . . . 4 ((Rel 𝐴𝐴 ∈ Fin) → 𝐴 ∈ Fin)
1916, 17, 18syl2anc 411 . . 3 (𝜑𝐴 ∈ Fin)
20 relcnv 5018 . . . . 5 Rel 𝐴
21 cnvf1o 6240 . . . . 5 (Rel 𝐴 → (𝑧𝐴 {𝑧}):𝐴1-1-onto𝐴)
2220, 21ax-mp 5 . . . 4 (𝑧𝐴 {𝑧}):𝐴1-1-onto𝐴
23 dfrel2 5091 . . . . . 6 (Rel 𝐴𝐴 = 𝐴)
2416, 23sylib 122 . . . . 5 (𝜑𝐴 = 𝐴)
25 f1oeq3 5463 . . . . 5 (𝐴 = 𝐴 → ((𝑧𝐴 {𝑧}):𝐴1-1-onto𝐴 ↔ (𝑧𝐴 {𝑧}):𝐴1-1-onto𝐴))
2624, 25syl 14 . . . 4 (𝜑 → ((𝑧𝐴 {𝑧}):𝐴1-1-onto𝐴 ↔ (𝑧𝐴 {𝑧}):𝐴1-1-onto𝐴))
2722, 26mpbii 148 . . 3 (𝜑 → (𝑧𝐴 {𝑧}):𝐴1-1-onto𝐴)
28 1st2nd 6196 . . . . . . 7 ((Rel 𝐴𝑦𝐴) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
2920, 28mpan 424 . . . . . 6 (𝑦𝐴𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
3029fveq2d 5531 . . . . 5 (𝑦𝐴 → ((𝑧𝐴 {𝑧})‘𝑦) = ((𝑧𝐴 {𝑧})‘⟨(1st𝑦), (2nd𝑦)⟩))
31 id 19 . . . . . . 7 (𝑦𝐴𝑦𝐴)
3229, 31eqeltrrd 2265 . . . . . 6 (𝑦𝐴 → ⟨(1st𝑦), (2nd𝑦)⟩ ∈ 𝐴)
33 sneq 3615 . . . . . . . . . 10 (𝑧 = ⟨(1st𝑦), (2nd𝑦)⟩ → {𝑧} = {⟨(1st𝑦), (2nd𝑦)⟩})
3433cnveqd 4815 . . . . . . . . 9 (𝑧 = ⟨(1st𝑦), (2nd𝑦)⟩ → {𝑧} = {⟨(1st𝑦), (2nd𝑦)⟩})
3534unieqd 3832 . . . . . . . 8 (𝑧 = ⟨(1st𝑦), (2nd𝑦)⟩ → {𝑧} = {⟨(1st𝑦), (2nd𝑦)⟩})
36 opswapg 5127 . . . . . . . . 9 (((1st𝑦) ∈ V ∧ (2nd𝑦) ∈ V) → {⟨(1st𝑦), (2nd𝑦)⟩} = ⟨(2nd𝑦), (1st𝑦)⟩)
375, 3, 36mp2an 426 . . . . . . . 8 {⟨(1st𝑦), (2nd𝑦)⟩} = ⟨(2nd𝑦), (1st𝑦)⟩
3835, 37eqtrdi 2236 . . . . . . 7 (𝑧 = ⟨(1st𝑦), (2nd𝑦)⟩ → {𝑧} = ⟨(2nd𝑦), (1st𝑦)⟩)
39 eqid 2187 . . . . . . 7 (𝑧𝐴 {𝑧}) = (𝑧𝐴 {𝑧})
403, 5opex 4241 . . . . . . 7 ⟨(2nd𝑦), (1st𝑦)⟩ ∈ V
4138, 39, 40fvmpt 5606 . . . . . 6 (⟨(1st𝑦), (2nd𝑦)⟩ ∈ 𝐴 → ((𝑧𝐴 {𝑧})‘⟨(1st𝑦), (2nd𝑦)⟩) = ⟨(2nd𝑦), (1st𝑦)⟩)
4232, 41syl 14 . . . . 5 (𝑦𝐴 → ((𝑧𝐴 {𝑧})‘⟨(1st𝑦), (2nd𝑦)⟩) = ⟨(2nd𝑦), (1st𝑦)⟩)
4330, 42eqtrd 2220 . . . 4 (𝑦𝐴 → ((𝑧𝐴 {𝑧})‘𝑦) = ⟨(2nd𝑦), (1st𝑦)⟩)
4443adantl 277 . . 3 ((𝜑𝑦𝐴) → ((𝑧𝐴 {𝑧})‘𝑦) = ⟨(2nd𝑦), (1st𝑦)⟩)
45 fsumcnv.5 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
4615, 19, 27, 44, 45fsumf1o 11412 . 2 (𝜑 → Σ𝑥𝐴 𝐵 = Σ𝑦 𝐴(2nd𝑦) / 𝑗(1st𝑦) / 𝑘𝐷)
47 csbeq1a 3078 . . . . 5 (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ → 𝐶 = ⟨(1st𝑦), (2nd𝑦)⟩ / 𝑦𝐶)
4829, 47syl 14 . . . 4 (𝑦𝐴𝐶 = ⟨(1st𝑦), (2nd𝑦)⟩ / 𝑦𝐶)
497, 6opex 4241 . . . . . . 7 𝑘, 𝑗⟩ ∈ V
50 fsumcnv.2 . . . . . . 7 (𝑦 = ⟨𝑘, 𝑗⟩ → 𝐶 = 𝐷)
5149, 50csbie 3114 . . . . . 6 𝑘, 𝑗⟩ / 𝑦𝐶 = 𝐷
52 opeq12 3792 . . . . . . . 8 ((𝑘 = (1st𝑦) ∧ 𝑗 = (2nd𝑦)) → ⟨𝑘, 𝑗⟩ = ⟨(1st𝑦), (2nd𝑦)⟩)
5352ancoms 268 . . . . . . 7 ((𝑗 = (2nd𝑦) ∧ 𝑘 = (1st𝑦)) → ⟨𝑘, 𝑗⟩ = ⟨(1st𝑦), (2nd𝑦)⟩)
5453csbeq1d 3076 . . . . . 6 ((𝑗 = (2nd𝑦) ∧ 𝑘 = (1st𝑦)) → 𝑘, 𝑗⟩ / 𝑦𝐶 = ⟨(1st𝑦), (2nd𝑦)⟩ / 𝑦𝐶)
5551, 54eqtr3id 2234 . . . . 5 ((𝑗 = (2nd𝑦) ∧ 𝑘 = (1st𝑦)) → 𝐷 = ⟨(1st𝑦), (2nd𝑦)⟩ / 𝑦𝐶)
563, 5, 55csbie2 3118 . . . 4 (2nd𝑦) / 𝑗(1st𝑦) / 𝑘𝐷 = ⟨(1st𝑦), (2nd𝑦)⟩ / 𝑦𝐶
5748, 56eqtr4di 2238 . . 3 (𝑦𝐴𝐶 = (2nd𝑦) / 𝑗(1st𝑦) / 𝑘𝐷)
5857sumeq2i 11386 . 2 Σ𝑦 𝐴𝐶 = Σ𝑦 𝐴(2nd𝑦) / 𝑗(1st𝑦) / 𝑘𝐷
5946, 58eqtr4di 2238 1 (𝜑 → Σ𝑥𝐴 𝐵 = Σ𝑦 𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1363  wcel 2158  Vcvv 2749  csb 3069  {csn 3604  cop 3607   cuni 3821  cmpt 4076  ccnv 4637  Rel wrel 4643  1-1-ontowf1o 5227  cfv 5228  1st c1st 6153  2nd c2nd 6154  Fincfn 6754  cc 7823  Σcsu 11375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-mulrcl 7924  ax-addcom 7925  ax-mulcom 7926  ax-addass 7927  ax-mulass 7928  ax-distr 7929  ax-i2m1 7930  ax-0lt1 7931  ax-1rid 7932  ax-0id 7933  ax-rnegex 7934  ax-precex 7935  ax-cnre 7936  ax-pre-ltirr 7937  ax-pre-ltwlin 7938  ax-pre-lttrn 7939  ax-pre-apti 7940  ax-pre-ltadd 7941  ax-pre-mulgt0 7942  ax-pre-mulext 7943  ax-arch 7944  ax-caucvg 7945
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-isom 5237  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6155  df-2nd 6156  df-recs 6320  df-irdg 6385  df-frec 6406  df-1o 6431  df-oadd 6435  df-er 6549  df-en 6755  df-dom 6756  df-fin 6757  df-pnf 8008  df-mnf 8009  df-xr 8010  df-ltxr 8011  df-le 8012  df-sub 8144  df-neg 8145  df-reap 8546  df-ap 8553  df-div 8644  df-inn 8934  df-2 8992  df-3 8993  df-4 8994  df-n0 9191  df-z 9268  df-uz 9543  df-q 9634  df-rp 9668  df-fz 10023  df-fzo 10157  df-seqfrec 10460  df-exp 10534  df-ihash 10770  df-cj 10865  df-re 10866  df-im 10867  df-rsqrt 11021  df-abs 11022  df-clim 11301  df-sumdc 11376
This theorem is referenced by:  fisumcom2  11460
  Copyright terms: Public domain W3C validator