ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumcnv GIF version

Theorem fsumcnv 11389
Description: Transform a region of summation by using the converse operation. (Contributed by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
fsumcnv.1 (𝑥 = ⟨𝑗, 𝑘⟩ → 𝐵 = 𝐷)
fsumcnv.2 (𝑦 = ⟨𝑘, 𝑗⟩ → 𝐶 = 𝐷)
fsumcnv.3 (𝜑𝐴 ∈ Fin)
fsumcnv.4 (𝜑 → Rel 𝐴)
fsumcnv.5 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
fsumcnv (𝜑 → Σ𝑥𝐴 𝐵 = Σ𝑦 𝐴𝐶)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑗,𝑘,𝑦,𝐵   𝑥,𝑗,𝐶,𝑘   𝜑,𝑥,𝑦   𝑥,𝐷,𝑦
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝐴(𝑗,𝑘)   𝐵(𝑥)   𝐶(𝑦)   𝐷(𝑗,𝑘)

Proof of Theorem fsumcnv
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 csbeq1a 3058 . . . 4 (𝑥 = ⟨(2nd𝑦), (1st𝑦)⟩ → 𝐵 = ⟨(2nd𝑦), (1st𝑦)⟩ / 𝑥𝐵)
2 2ndexg 6145 . . . . . 6 (𝑦 ∈ V → (2nd𝑦) ∈ V)
32elv 2734 . . . . 5 (2nd𝑦) ∈ V
4 1stexg 6144 . . . . . 6 (𝑦 ∈ V → (1st𝑦) ∈ V)
54elv 2734 . . . . 5 (1st𝑦) ∈ V
6 vex 2733 . . . . . . . 8 𝑗 ∈ V
7 vex 2733 . . . . . . . 8 𝑘 ∈ V
86, 7opex 4212 . . . . . . 7 𝑗, 𝑘⟩ ∈ V
9 fsumcnv.1 . . . . . . 7 (𝑥 = ⟨𝑗, 𝑘⟩ → 𝐵 = 𝐷)
108, 9csbie 3094 . . . . . 6 𝑗, 𝑘⟩ / 𝑥𝐵 = 𝐷
11 opeq12 3765 . . . . . . 7 ((𝑗 = (2nd𝑦) ∧ 𝑘 = (1st𝑦)) → ⟨𝑗, 𝑘⟩ = ⟨(2nd𝑦), (1st𝑦)⟩)
1211csbeq1d 3056 . . . . . 6 ((𝑗 = (2nd𝑦) ∧ 𝑘 = (1st𝑦)) → 𝑗, 𝑘⟩ / 𝑥𝐵 = ⟨(2nd𝑦), (1st𝑦)⟩ / 𝑥𝐵)
1310, 12eqtr3id 2217 . . . . 5 ((𝑗 = (2nd𝑦) ∧ 𝑘 = (1st𝑦)) → 𝐷 = ⟨(2nd𝑦), (1st𝑦)⟩ / 𝑥𝐵)
143, 5, 13csbie2 3098 . . . 4 (2nd𝑦) / 𝑗(1st𝑦) / 𝑘𝐷 = ⟨(2nd𝑦), (1st𝑦)⟩ / 𝑥𝐵
151, 14eqtr4di 2221 . . 3 (𝑥 = ⟨(2nd𝑦), (1st𝑦)⟩ → 𝐵 = (2nd𝑦) / 𝑗(1st𝑦) / 𝑘𝐷)
16 fsumcnv.4 . . . 4 (𝜑 → Rel 𝐴)
17 fsumcnv.3 . . . 4 (𝜑𝐴 ∈ Fin)
18 relcnvfi 6915 . . . 4 ((Rel 𝐴𝐴 ∈ Fin) → 𝐴 ∈ Fin)
1916, 17, 18syl2anc 409 . . 3 (𝜑𝐴 ∈ Fin)
20 relcnv 4987 . . . . 5 Rel 𝐴
21 cnvf1o 6202 . . . . 5 (Rel 𝐴 → (𝑧𝐴 {𝑧}):𝐴1-1-onto𝐴)
2220, 21ax-mp 5 . . . 4 (𝑧𝐴 {𝑧}):𝐴1-1-onto𝐴
23 dfrel2 5059 . . . . . 6 (Rel 𝐴𝐴 = 𝐴)
2416, 23sylib 121 . . . . 5 (𝜑𝐴 = 𝐴)
25 f1oeq3 5431 . . . . 5 (𝐴 = 𝐴 → ((𝑧𝐴 {𝑧}):𝐴1-1-onto𝐴 ↔ (𝑧𝐴 {𝑧}):𝐴1-1-onto𝐴))
2624, 25syl 14 . . . 4 (𝜑 → ((𝑧𝐴 {𝑧}):𝐴1-1-onto𝐴 ↔ (𝑧𝐴 {𝑧}):𝐴1-1-onto𝐴))
2722, 26mpbii 147 . . 3 (𝜑 → (𝑧𝐴 {𝑧}):𝐴1-1-onto𝐴)
28 1st2nd 6158 . . . . . . 7 ((Rel 𝐴𝑦𝐴) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
2920, 28mpan 422 . . . . . 6 (𝑦𝐴𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
3029fveq2d 5498 . . . . 5 (𝑦𝐴 → ((𝑧𝐴 {𝑧})‘𝑦) = ((𝑧𝐴 {𝑧})‘⟨(1st𝑦), (2nd𝑦)⟩))
31 id 19 . . . . . . 7 (𝑦𝐴𝑦𝐴)
3229, 31eqeltrrd 2248 . . . . . 6 (𝑦𝐴 → ⟨(1st𝑦), (2nd𝑦)⟩ ∈ 𝐴)
33 sneq 3592 . . . . . . . . . 10 (𝑧 = ⟨(1st𝑦), (2nd𝑦)⟩ → {𝑧} = {⟨(1st𝑦), (2nd𝑦)⟩})
3433cnveqd 4785 . . . . . . . . 9 (𝑧 = ⟨(1st𝑦), (2nd𝑦)⟩ → {𝑧} = {⟨(1st𝑦), (2nd𝑦)⟩})
3534unieqd 3805 . . . . . . . 8 (𝑧 = ⟨(1st𝑦), (2nd𝑦)⟩ → {𝑧} = {⟨(1st𝑦), (2nd𝑦)⟩})
36 opswapg 5095 . . . . . . . . 9 (((1st𝑦) ∈ V ∧ (2nd𝑦) ∈ V) → {⟨(1st𝑦), (2nd𝑦)⟩} = ⟨(2nd𝑦), (1st𝑦)⟩)
375, 3, 36mp2an 424 . . . . . . . 8 {⟨(1st𝑦), (2nd𝑦)⟩} = ⟨(2nd𝑦), (1st𝑦)⟩
3835, 37eqtrdi 2219 . . . . . . 7 (𝑧 = ⟨(1st𝑦), (2nd𝑦)⟩ → {𝑧} = ⟨(2nd𝑦), (1st𝑦)⟩)
39 eqid 2170 . . . . . . 7 (𝑧𝐴 {𝑧}) = (𝑧𝐴 {𝑧})
403, 5opex 4212 . . . . . . 7 ⟨(2nd𝑦), (1st𝑦)⟩ ∈ V
4138, 39, 40fvmpt 5571 . . . . . 6 (⟨(1st𝑦), (2nd𝑦)⟩ ∈ 𝐴 → ((𝑧𝐴 {𝑧})‘⟨(1st𝑦), (2nd𝑦)⟩) = ⟨(2nd𝑦), (1st𝑦)⟩)
4232, 41syl 14 . . . . 5 (𝑦𝐴 → ((𝑧𝐴 {𝑧})‘⟨(1st𝑦), (2nd𝑦)⟩) = ⟨(2nd𝑦), (1st𝑦)⟩)
4330, 42eqtrd 2203 . . . 4 (𝑦𝐴 → ((𝑧𝐴 {𝑧})‘𝑦) = ⟨(2nd𝑦), (1st𝑦)⟩)
4443adantl 275 . . 3 ((𝜑𝑦𝐴) → ((𝑧𝐴 {𝑧})‘𝑦) = ⟨(2nd𝑦), (1st𝑦)⟩)
45 fsumcnv.5 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
4615, 19, 27, 44, 45fsumf1o 11342 . 2 (𝜑 → Σ𝑥𝐴 𝐵 = Σ𝑦 𝐴(2nd𝑦) / 𝑗(1st𝑦) / 𝑘𝐷)
47 csbeq1a 3058 . . . . 5 (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ → 𝐶 = ⟨(1st𝑦), (2nd𝑦)⟩ / 𝑦𝐶)
4829, 47syl 14 . . . 4 (𝑦𝐴𝐶 = ⟨(1st𝑦), (2nd𝑦)⟩ / 𝑦𝐶)
497, 6opex 4212 . . . . . . 7 𝑘, 𝑗⟩ ∈ V
50 fsumcnv.2 . . . . . . 7 (𝑦 = ⟨𝑘, 𝑗⟩ → 𝐶 = 𝐷)
5149, 50csbie 3094 . . . . . 6 𝑘, 𝑗⟩ / 𝑦𝐶 = 𝐷
52 opeq12 3765 . . . . . . . 8 ((𝑘 = (1st𝑦) ∧ 𝑗 = (2nd𝑦)) → ⟨𝑘, 𝑗⟩ = ⟨(1st𝑦), (2nd𝑦)⟩)
5352ancoms 266 . . . . . . 7 ((𝑗 = (2nd𝑦) ∧ 𝑘 = (1st𝑦)) → ⟨𝑘, 𝑗⟩ = ⟨(1st𝑦), (2nd𝑦)⟩)
5453csbeq1d 3056 . . . . . 6 ((𝑗 = (2nd𝑦) ∧ 𝑘 = (1st𝑦)) → 𝑘, 𝑗⟩ / 𝑦𝐶 = ⟨(1st𝑦), (2nd𝑦)⟩ / 𝑦𝐶)
5551, 54eqtr3id 2217 . . . . 5 ((𝑗 = (2nd𝑦) ∧ 𝑘 = (1st𝑦)) → 𝐷 = ⟨(1st𝑦), (2nd𝑦)⟩ / 𝑦𝐶)
563, 5, 55csbie2 3098 . . . 4 (2nd𝑦) / 𝑗(1st𝑦) / 𝑘𝐷 = ⟨(1st𝑦), (2nd𝑦)⟩ / 𝑦𝐶
5748, 56eqtr4di 2221 . . 3 (𝑦𝐴𝐶 = (2nd𝑦) / 𝑗(1st𝑦) / 𝑘𝐷)
5857sumeq2i 11316 . 2 Σ𝑦 𝐴𝐶 = Σ𝑦 𝐴(2nd𝑦) / 𝑗(1st𝑦) / 𝑘𝐷
5946, 58eqtr4di 2221 1 (𝜑 → Σ𝑥𝐴 𝐵 = Σ𝑦 𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141  Vcvv 2730  csb 3049  {csn 3581  cop 3584   cuni 3794  cmpt 4048  ccnv 4608  Rel wrel 4614  1-1-ontowf1o 5195  cfv 5196  1st c1st 6115  2nd c2nd 6116  Fincfn 6715  cc 7761  Σcsu 11305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7854  ax-resscn 7855  ax-1cn 7856  ax-1re 7857  ax-icn 7858  ax-addcl 7859  ax-addrcl 7860  ax-mulcl 7861  ax-mulrcl 7862  ax-addcom 7863  ax-mulcom 7864  ax-addass 7865  ax-mulass 7866  ax-distr 7867  ax-i2m1 7868  ax-0lt1 7869  ax-1rid 7870  ax-0id 7871  ax-rnegex 7872  ax-precex 7873  ax-cnre 7874  ax-pre-ltirr 7875  ax-pre-ltwlin 7876  ax-pre-lttrn 7877  ax-pre-apti 7878  ax-pre-ltadd 7879  ax-pre-mulgt0 7880  ax-pre-mulext 7881  ax-arch 7882  ax-caucvg 7883
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-isom 5205  df-riota 5807  df-ov 5854  df-oprab 5855  df-mpo 5856  df-1st 6117  df-2nd 6118  df-recs 6282  df-irdg 6347  df-frec 6368  df-1o 6393  df-oadd 6397  df-er 6510  df-en 6716  df-dom 6717  df-fin 6718  df-pnf 7945  df-mnf 7946  df-xr 7947  df-ltxr 7948  df-le 7949  df-sub 8081  df-neg 8082  df-reap 8483  df-ap 8490  df-div 8579  df-inn 8868  df-2 8926  df-3 8927  df-4 8928  df-n0 9125  df-z 9202  df-uz 9477  df-q 9568  df-rp 9600  df-fz 9955  df-fzo 10088  df-seqfrec 10391  df-exp 10465  df-ihash 10699  df-cj 10795  df-re 10796  df-im 10797  df-rsqrt 10951  df-abs 10952  df-clim 11231  df-sumdc 11306
This theorem is referenced by:  fisumcom2  11390
  Copyright terms: Public domain W3C validator