| Step | Hyp | Ref
| Expression |
| 1 | | ancr 321 |
. . . . 5
⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴))) |
| 2 | | simpr 110 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴) → ¬ 𝑥 ∈ 𝐴) |
| 3 | 2 | con2i 628 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐴 → ¬ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) |
| 4 | 3 | anim2i 342 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐵 ∧ ¬ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴))) |
| 5 | | eldif 3166 |
. . . . . . 7
⊢ (𝑥 ∈ (𝐵 ∖ (𝐵 ∖ 𝐴)) ↔ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ (𝐵 ∖ 𝐴))) |
| 6 | | eldif 3166 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝐵 ∖ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) |
| 7 | 6 | notbii 669 |
. . . . . . . 8
⊢ (¬
𝑥 ∈ (𝐵 ∖ 𝐴) ↔ ¬ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) |
| 8 | 7 | anbi2i 457 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ (𝐵 ∖ 𝐴)) ↔ (𝑥 ∈ 𝐵 ∧ ¬ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴))) |
| 9 | 5, 8 | bitri 184 |
. . . . . 6
⊢ (𝑥 ∈ (𝐵 ∖ (𝐵 ∖ 𝐴)) ↔ (𝑥 ∈ 𝐵 ∧ ¬ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴))) |
| 10 | 4, 9 | sylibr 134 |
. . . . 5
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ (𝐵 ∖ (𝐵 ∖ 𝐴))) |
| 11 | 1, 10 | syl6 33 |
. . . 4
⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → (𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐵 ∖ (𝐵 ∖ 𝐴)))) |
| 12 | | eldifi 3286 |
. . . . 5
⊢ (𝑥 ∈ (𝐵 ∖ (𝐵 ∖ 𝐴)) → 𝑥 ∈ 𝐵) |
| 13 | 12 | imim2i 12 |
. . . 4
⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐵 ∖ (𝐵 ∖ 𝐴))) → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| 14 | 11, 13 | impbii 126 |
. . 3
⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐵 ∖ (𝐵 ∖ 𝐴)))) |
| 15 | 14 | albii 1484 |
. 2
⊢
(∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐵 ∖ (𝐵 ∖ 𝐴)))) |
| 16 | | ssalel 3172 |
. 2
⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| 17 | | ssalel 3172 |
. 2
⊢ (𝐴 ⊆ (𝐵 ∖ (𝐵 ∖ 𝐴)) ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐵 ∖ (𝐵 ∖ 𝐴)))) |
| 18 | 15, 16, 17 | 3bitr4i 212 |
1
⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 ⊆ (𝐵 ∖ (𝐵 ∖ 𝐴))) |