ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssddif GIF version

Theorem ssddif 3315
Description: Double complement and subset. Similar to ddifss 3319 but inside a class 𝐵 instead of the universal class V. In classical logic the subset operation on the right hand side could be an equality (that is, 𝐴𝐵 ↔ (𝐵 ∖ (𝐵𝐴)) = 𝐴). (Contributed by Jim Kingdon, 24-Jul-2018.)
Assertion
Ref Expression
ssddif (𝐴𝐵𝐴 ⊆ (𝐵 ∖ (𝐵𝐴)))

Proof of Theorem ssddif
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ancr 319 . . . . 5 ((𝑥𝐴𝑥𝐵) → (𝑥𝐴 → (𝑥𝐵𝑥𝐴)))
2 simpr 109 . . . . . . . 8 ((𝑥𝐵 ∧ ¬ 𝑥𝐴) → ¬ 𝑥𝐴)
32con2i 617 . . . . . . 7 (𝑥𝐴 → ¬ (𝑥𝐵 ∧ ¬ 𝑥𝐴))
43anim2i 340 . . . . . 6 ((𝑥𝐵𝑥𝐴) → (𝑥𝐵 ∧ ¬ (𝑥𝐵 ∧ ¬ 𝑥𝐴)))
5 eldif 3085 . . . . . . 7 (𝑥 ∈ (𝐵 ∖ (𝐵𝐴)) ↔ (𝑥𝐵 ∧ ¬ 𝑥 ∈ (𝐵𝐴)))
6 eldif 3085 . . . . . . . . 9 (𝑥 ∈ (𝐵𝐴) ↔ (𝑥𝐵 ∧ ¬ 𝑥𝐴))
76notbii 658 . . . . . . . 8 𝑥 ∈ (𝐵𝐴) ↔ ¬ (𝑥𝐵 ∧ ¬ 𝑥𝐴))
87anbi2i 453 . . . . . . 7 ((𝑥𝐵 ∧ ¬ 𝑥 ∈ (𝐵𝐴)) ↔ (𝑥𝐵 ∧ ¬ (𝑥𝐵 ∧ ¬ 𝑥𝐴)))
95, 8bitri 183 . . . . . 6 (𝑥 ∈ (𝐵 ∖ (𝐵𝐴)) ↔ (𝑥𝐵 ∧ ¬ (𝑥𝐵 ∧ ¬ 𝑥𝐴)))
104, 9sylibr 133 . . . . 5 ((𝑥𝐵𝑥𝐴) → 𝑥 ∈ (𝐵 ∖ (𝐵𝐴)))
111, 10syl6 33 . . . 4 ((𝑥𝐴𝑥𝐵) → (𝑥𝐴𝑥 ∈ (𝐵 ∖ (𝐵𝐴))))
12 eldifi 3203 . . . . 5 (𝑥 ∈ (𝐵 ∖ (𝐵𝐴)) → 𝑥𝐵)
1312imim2i 12 . . . 4 ((𝑥𝐴𝑥 ∈ (𝐵 ∖ (𝐵𝐴))) → (𝑥𝐴𝑥𝐵))
1411, 13impbii 125 . . 3 ((𝑥𝐴𝑥𝐵) ↔ (𝑥𝐴𝑥 ∈ (𝐵 ∖ (𝐵𝐴))))
1514albii 1447 . 2 (∀𝑥(𝑥𝐴𝑥𝐵) ↔ ∀𝑥(𝑥𝐴𝑥 ∈ (𝐵 ∖ (𝐵𝐴))))
16 dfss2 3091 . 2 (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
17 dfss2 3091 . 2 (𝐴 ⊆ (𝐵 ∖ (𝐵𝐴)) ↔ ∀𝑥(𝑥𝐴𝑥 ∈ (𝐵 ∖ (𝐵𝐴))))
1815, 16, 173bitr4i 211 1 (𝐴𝐵𝐴 ⊆ (𝐵 ∖ (𝐵𝐴)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wal 1330  wcel 1481  cdif 3073  wss 3076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-v 2691  df-dif 3078  df-in 3082  df-ss 3089
This theorem is referenced by:  ddifss  3319  inssddif  3322
  Copyright terms: Public domain W3C validator