ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssddif GIF version

Theorem ssddif 3369
Description: Double complement and subset. Similar to ddifss 3373 but inside a class 𝐵 instead of the universal class V. In classical logic the subset operation on the right hand side could be an equality (that is, 𝐴𝐵 ↔ (𝐵 ∖ (𝐵𝐴)) = 𝐴). (Contributed by Jim Kingdon, 24-Jul-2018.)
Assertion
Ref Expression
ssddif (𝐴𝐵𝐴 ⊆ (𝐵 ∖ (𝐵𝐴)))

Proof of Theorem ssddif
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ancr 321 . . . . 5 ((𝑥𝐴𝑥𝐵) → (𝑥𝐴 → (𝑥𝐵𝑥𝐴)))
2 simpr 110 . . . . . . . 8 ((𝑥𝐵 ∧ ¬ 𝑥𝐴) → ¬ 𝑥𝐴)
32con2i 627 . . . . . . 7 (𝑥𝐴 → ¬ (𝑥𝐵 ∧ ¬ 𝑥𝐴))
43anim2i 342 . . . . . 6 ((𝑥𝐵𝑥𝐴) → (𝑥𝐵 ∧ ¬ (𝑥𝐵 ∧ ¬ 𝑥𝐴)))
5 eldif 3138 . . . . . . 7 (𝑥 ∈ (𝐵 ∖ (𝐵𝐴)) ↔ (𝑥𝐵 ∧ ¬ 𝑥 ∈ (𝐵𝐴)))
6 eldif 3138 . . . . . . . . 9 (𝑥 ∈ (𝐵𝐴) ↔ (𝑥𝐵 ∧ ¬ 𝑥𝐴))
76notbii 668 . . . . . . . 8 𝑥 ∈ (𝐵𝐴) ↔ ¬ (𝑥𝐵 ∧ ¬ 𝑥𝐴))
87anbi2i 457 . . . . . . 7 ((𝑥𝐵 ∧ ¬ 𝑥 ∈ (𝐵𝐴)) ↔ (𝑥𝐵 ∧ ¬ (𝑥𝐵 ∧ ¬ 𝑥𝐴)))
95, 8bitri 184 . . . . . 6 (𝑥 ∈ (𝐵 ∖ (𝐵𝐴)) ↔ (𝑥𝐵 ∧ ¬ (𝑥𝐵 ∧ ¬ 𝑥𝐴)))
104, 9sylibr 134 . . . . 5 ((𝑥𝐵𝑥𝐴) → 𝑥 ∈ (𝐵 ∖ (𝐵𝐴)))
111, 10syl6 33 . . . 4 ((𝑥𝐴𝑥𝐵) → (𝑥𝐴𝑥 ∈ (𝐵 ∖ (𝐵𝐴))))
12 eldifi 3257 . . . . 5 (𝑥 ∈ (𝐵 ∖ (𝐵𝐴)) → 𝑥𝐵)
1312imim2i 12 . . . 4 ((𝑥𝐴𝑥 ∈ (𝐵 ∖ (𝐵𝐴))) → (𝑥𝐴𝑥𝐵))
1411, 13impbii 126 . . 3 ((𝑥𝐴𝑥𝐵) ↔ (𝑥𝐴𝑥 ∈ (𝐵 ∖ (𝐵𝐴))))
1514albii 1470 . 2 (∀𝑥(𝑥𝐴𝑥𝐵) ↔ ∀𝑥(𝑥𝐴𝑥 ∈ (𝐵 ∖ (𝐵𝐴))))
16 dfss2 3144 . 2 (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
17 dfss2 3144 . 2 (𝐴 ⊆ (𝐵 ∖ (𝐵𝐴)) ↔ ∀𝑥(𝑥𝐴𝑥 ∈ (𝐵 ∖ (𝐵𝐴))))
1815, 16, 173bitr4i 212 1 (𝐴𝐵𝐴 ⊆ (𝐵 ∖ (𝐵𝐴)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wal 1351  wcel 2148  cdif 3126  wss 3129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2739  df-dif 3131  df-in 3135  df-ss 3142
This theorem is referenced by:  ddifss  3373  inssddif  3376
  Copyright terms: Public domain W3C validator