Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > deceq2i | GIF version |
Description: Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.) |
Ref | Expression |
---|---|
deceq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
deceq2i | ⊢ ;𝐶𝐴 = ;𝐶𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | deceq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | deceq2 9323 | . 2 ⊢ (𝐴 = 𝐵 → ;𝐶𝐴 = ;𝐶𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ;𝐶𝐴 = ;𝐶𝐵 |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ;cdc 9318 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-rex 2449 df-v 2727 df-un 3119 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-br 3982 df-iota 5152 df-fv 5195 df-ov 5844 df-dec 9319 |
This theorem is referenced by: deceq12i 9326 |
Copyright terms: Public domain | W3C validator |