![]() |
Intuitionistic Logic Explorer Theorem List (p. 94 of 157) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | nn0mulcld 9301 | Closure of multiplication of nonnegative integers, inference form. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℕ0) | ||
Theorem | nn0readdcl 9302 | Closure law for addition of reals, restricted to nonnegative integers. (Contributed by Alexander van der Vekens, 6-Apr-2018.) |
⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 + 𝐵) ∈ ℝ) | ||
Theorem | nn0ge2m1nn 9303 | If a nonnegative integer is greater than or equal to two, the integer decreased by 1 is a positive integer. (Contributed by Alexander van der Vekens, 1-Aug-2018.) (Revised by AV, 4-Jan-2020.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ) | ||
Theorem | nn0ge2m1nn0 9304 | If a nonnegative integer is greater than or equal to two, the integer decreased by 1 is also a nonnegative integer. (Contributed by Alexander van der Vekens, 1-Aug-2018.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ0) | ||
Theorem | nn0nndivcl 9305 | Closure law for dividing of a nonnegative integer by a positive integer. (Contributed by Alexander van der Vekens, 14-Apr-2018.) |
⊢ ((𝐾 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) → (𝐾 / 𝐿) ∈ ℝ) | ||
The function values of the hash (set size) function are either nonnegative integers or positive infinity. To avoid the need to distinguish between finite and infinite sets (and therefore if the set size is a nonnegative integer or positive infinity), it is useful to provide a definition of the set of nonnegative integers extended by positive infinity, analogously to the extension of the real numbers ℝ*, see df-xr 8060. | ||
Syntax | cxnn0 9306 | The set of extended nonnegative integers. |
class ℕ0* | ||
Definition | df-xnn0 9307 | Define the set of extended nonnegative integers that includes positive infinity. Analogue of the extension of the real numbers ℝ*, see df-xr 8060. If we assumed excluded middle, this would be essentially the same as ℕ∞ as defined at df-nninf 7181 but in its absence the relationship between the two is more complicated. (Contributed by AV, 10-Dec-2020.) |
⊢ ℕ0* = (ℕ0 ∪ {+∞}) | ||
Theorem | elxnn0 9308 | An extended nonnegative integer is either a standard nonnegative integer or positive infinity. (Contributed by AV, 10-Dec-2020.) |
⊢ (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0 ∨ 𝐴 = +∞)) | ||
Theorem | nn0ssxnn0 9309 | The standard nonnegative integers are a subset of the extended nonnegative integers. (Contributed by AV, 10-Dec-2020.) |
⊢ ℕ0 ⊆ ℕ0* | ||
Theorem | nn0xnn0 9310 | A standard nonnegative integer is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.) |
⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℕ0*) | ||
Theorem | xnn0xr 9311 | An extended nonnegative integer is an extended real. (Contributed by AV, 10-Dec-2020.) |
⊢ (𝐴 ∈ ℕ0* → 𝐴 ∈ ℝ*) | ||
Theorem | 0xnn0 9312 | Zero is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.) |
⊢ 0 ∈ ℕ0* | ||
Theorem | pnf0xnn0 9313 | Positive infinity is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.) |
⊢ +∞ ∈ ℕ0* | ||
Theorem | nn0nepnf 9314 | No standard nonnegative integer equals positive infinity. (Contributed by AV, 10-Dec-2020.) |
⊢ (𝐴 ∈ ℕ0 → 𝐴 ≠ +∞) | ||
Theorem | nn0xnn0d 9315 | A standard nonnegative integer is an extended nonnegative integer, deduction form. (Contributed by AV, 10-Dec-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℕ0) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℕ0*) | ||
Theorem | nn0nepnfd 9316 | No standard nonnegative integer equals positive infinity, deduction form. (Contributed by AV, 10-Dec-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℕ0) ⇒ ⊢ (𝜑 → 𝐴 ≠ +∞) | ||
Theorem | xnn0nemnf 9317 | No extended nonnegative integer equals negative infinity. (Contributed by AV, 10-Dec-2020.) |
⊢ (𝐴 ∈ ℕ0* → 𝐴 ≠ -∞) | ||
Theorem | xnn0xrnemnf 9318 | The extended nonnegative integers are extended reals without negative infinity. (Contributed by AV, 10-Dec-2020.) |
⊢ (𝐴 ∈ ℕ0* → (𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞)) | ||
Theorem | xnn0nnn0pnf 9319 | An extended nonnegative integer which is not a standard nonnegative integer is positive infinity. (Contributed by AV, 10-Dec-2020.) |
⊢ ((𝑁 ∈ ℕ0* ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 = +∞) | ||
Syntax | cz 9320 | Extend class notation to include the class of integers. |
class ℤ | ||
Definition | df-z 9321 | Define the set of integers, which are the positive and negative integers together with zero. Definition of integers in [Apostol] p. 22. The letter Z abbreviates the German word Zahlen meaning "numbers." (Contributed by NM, 8-Jan-2002.) |
⊢ ℤ = {𝑛 ∈ ℝ ∣ (𝑛 = 0 ∨ 𝑛 ∈ ℕ ∨ -𝑛 ∈ ℕ)} | ||
Theorem | elz 9322 | Membership in the set of integers. (Contributed by NM, 8-Jan-2002.) |
⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) | ||
Theorem | nnnegz 9323 | The negative of a positive integer is an integer. (Contributed by NM, 12-Jan-2002.) |
⊢ (𝑁 ∈ ℕ → -𝑁 ∈ ℤ) | ||
Theorem | zre 9324 | An integer is a real. (Contributed by NM, 8-Jan-2002.) |
⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | ||
Theorem | zcn 9325 | An integer is a complex number. (Contributed by NM, 9-May-2004.) |
⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | ||
Theorem | zrei 9326 | An integer is a real number. (Contributed by NM, 14-Jul-2005.) |
⊢ 𝐴 ∈ ℤ ⇒ ⊢ 𝐴 ∈ ℝ | ||
Theorem | zssre 9327 | The integers are a subset of the reals. (Contributed by NM, 2-Aug-2004.) |
⊢ ℤ ⊆ ℝ | ||
Theorem | zsscn 9328 | The integers are a subset of the complex numbers. (Contributed by NM, 2-Aug-2004.) |
⊢ ℤ ⊆ ℂ | ||
Theorem | zex 9329 | The set of integers exists. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ ℤ ∈ V | ||
Theorem | elnnz 9330 | Positive integer property expressed in terms of integers. (Contributed by NM, 8-Jan-2002.) |
⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁)) | ||
Theorem | 0z 9331 | Zero is an integer. (Contributed by NM, 12-Jan-2002.) |
⊢ 0 ∈ ℤ | ||
Theorem | 0zd 9332 | Zero is an integer, deductive form (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ (𝜑 → 0 ∈ ℤ) | ||
Theorem | elnn0z 9333 | Nonnegative integer property expressed in terms of integers. (Contributed by NM, 9-May-2004.) |
⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁)) | ||
Theorem | elznn0nn 9334 | Integer property expressed in terms nonnegative integers and positive integers. (Contributed by NM, 10-May-2004.) |
⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ))) | ||
Theorem | elznn0 9335 | Integer property expressed in terms of nonnegative integers. (Contributed by NM, 9-May-2004.) |
⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))) | ||
Theorem | elznn 9336 | Integer property expressed in terms of positive integers and nonnegative integers. (Contributed by NM, 12-Jul-2005.) |
⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ0))) | ||
Theorem | nnssz 9337 | Positive integers are a subset of integers. (Contributed by NM, 9-Jan-2002.) |
⊢ ℕ ⊆ ℤ | ||
Theorem | nn0ssz 9338 | Nonnegative integers are a subset of the integers. (Contributed by NM, 9-May-2004.) |
⊢ ℕ0 ⊆ ℤ | ||
Theorem | nnz 9339 | A positive integer is an integer. (Contributed by NM, 9-May-2004.) |
⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | ||
Theorem | nn0z 9340 | A nonnegative integer is an integer. (Contributed by NM, 9-May-2004.) |
⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | ||
Theorem | nnzi 9341 | A positive integer is an integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝑁 ∈ ℕ ⇒ ⊢ 𝑁 ∈ ℤ | ||
Theorem | nn0zi 9342 | A nonnegative integer is an integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝑁 ∈ ℕ0 ⇒ ⊢ 𝑁 ∈ ℤ | ||
Theorem | elnnz1 9343 | Positive integer property expressed in terms of integers. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 1 ≤ 𝑁)) | ||
Theorem | nnzrab 9344 | Positive integers expressed as a subset of integers. (Contributed by NM, 3-Oct-2004.) |
⊢ ℕ = {𝑥 ∈ ℤ ∣ 1 ≤ 𝑥} | ||
Theorem | nn0zrab 9345 | Nonnegative integers expressed as a subset of integers. (Contributed by NM, 3-Oct-2004.) |
⊢ ℕ0 = {𝑥 ∈ ℤ ∣ 0 ≤ 𝑥} | ||
Theorem | 1z 9346 | One is an integer. (Contributed by NM, 10-May-2004.) |
⊢ 1 ∈ ℤ | ||
Theorem | 1zzd 9347 | 1 is an integer, deductive form (common case). (Contributed by David A. Wheeler, 6-Dec-2018.) |
⊢ (𝜑 → 1 ∈ ℤ) | ||
Theorem | 2z 9348 | Two is an integer. (Contributed by NM, 10-May-2004.) |
⊢ 2 ∈ ℤ | ||
Theorem | 3z 9349 | 3 is an integer. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ 3 ∈ ℤ | ||
Theorem | 4z 9350 | 4 is an integer. (Contributed by BJ, 26-Mar-2020.) |
⊢ 4 ∈ ℤ | ||
Theorem | znegcl 9351 | Closure law for negative integers. (Contributed by NM, 9-May-2004.) |
⊢ (𝑁 ∈ ℤ → -𝑁 ∈ ℤ) | ||
Theorem | neg1z 9352 | -1 is an integer (common case). (Contributed by David A. Wheeler, 5-Dec-2018.) |
⊢ -1 ∈ ℤ | ||
Theorem | znegclb 9353 | A number is an integer iff its negative is. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
⊢ (𝐴 ∈ ℂ → (𝐴 ∈ ℤ ↔ -𝐴 ∈ ℤ)) | ||
Theorem | nn0negz 9354 | The negative of a nonnegative integer is an integer. (Contributed by NM, 9-May-2004.) |
⊢ (𝑁 ∈ ℕ0 → -𝑁 ∈ ℤ) | ||
Theorem | nn0negzi 9355 | The negative of a nonnegative integer is an integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝑁 ∈ ℕ0 ⇒ ⊢ -𝑁 ∈ ℤ | ||
Theorem | peano2z 9356 | Second Peano postulate generalized to integers. (Contributed by NM, 13-Feb-2005.) |
⊢ (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ) | ||
Theorem | zaddcllempos 9357 | Lemma for zaddcl 9360. Special case in which 𝑁 is a positive integer. (Contributed by Jim Kingdon, 14-Mar-2020.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℤ) | ||
Theorem | peano2zm 9358 | "Reverse" second Peano postulate for integers. (Contributed by NM, 12-Sep-2005.) |
⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) | ||
Theorem | zaddcllemneg 9359 | Lemma for zaddcl 9360. Special case in which -𝑁 is a positive integer. (Contributed by Jim Kingdon, 14-Mar-2020.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℤ) | ||
Theorem | zaddcl 9360 | Closure of addition of integers. (Contributed by NM, 9-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ) | ||
Theorem | zsubcl 9361 | Closure of subtraction of integers. (Contributed by NM, 11-May-2004.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 − 𝑁) ∈ ℤ) | ||
Theorem | ztri3or0 9362 | Integer trichotomy (with zero). (Contributed by Jim Kingdon, 14-Mar-2020.) |
⊢ (𝑁 ∈ ℤ → (𝑁 < 0 ∨ 𝑁 = 0 ∨ 0 < 𝑁)) | ||
Theorem | ztri3or 9363 | Integer trichotomy. (Contributed by Jim Kingdon, 14-Mar-2020.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ∨ 𝑀 = 𝑁 ∨ 𝑁 < 𝑀)) | ||
Theorem | zletric 9364 | Trichotomy law. (Contributed by Jim Kingdon, 27-Mar-2020.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) | ||
Theorem | zlelttric 9365 | Trichotomy law. (Contributed by Jim Kingdon, 17-Apr-2020.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ≤ 𝐵 ∨ 𝐵 < 𝐴)) | ||
Theorem | zltnle 9366 | 'Less than' expressed in terms of 'less than or equal to'. (Contributed by Jim Kingdon, 14-Mar-2020.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) | ||
Theorem | zleloe 9367 | Integer 'Less than or equal to' expressed in terms of 'less than' or 'equals'. (Contributed by Jim Kingdon, 8-Apr-2020.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ≤ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐴 = 𝐵))) | ||
Theorem | znnnlt1 9368 | An integer is not a positive integer iff it is less than one. (Contributed by NM, 13-Jul-2005.) |
⊢ (𝑁 ∈ ℤ → (¬ 𝑁 ∈ ℕ ↔ 𝑁 < 1)) | ||
Theorem | zletr 9369 | Transitive law of ordering for integers. (Contributed by Alexander van der Vekens, 3-Apr-2018.) |
⊢ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐽 ≤ 𝐾 ∧ 𝐾 ≤ 𝐿) → 𝐽 ≤ 𝐿)) | ||
Theorem | zrevaddcl 9370 | Reverse closure law for addition of integers. (Contributed by NM, 11-May-2004.) |
⊢ (𝑁 ∈ ℤ → ((𝑀 ∈ ℂ ∧ (𝑀 + 𝑁) ∈ ℤ) ↔ 𝑀 ∈ ℤ)) | ||
Theorem | znnsub 9371 | The positive difference of unequal integers is a positive integer. (Generalization of nnsub 9023.) (Contributed by NM, 11-May-2004.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑁 − 𝑀) ∈ ℕ)) | ||
Theorem | nzadd 9372 | The sum of a real number not being an integer and an integer is not an integer. Note that "not being an integer" in this case means "the negation of is an integer" rather than "is apart from any integer" (given excluded middle, those two would be equivalent). (Contributed by AV, 19-Jul-2021.) |
⊢ ((𝐴 ∈ (ℝ ∖ ℤ) ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ (ℝ ∖ ℤ)) | ||
Theorem | zmulcl 9373 | Closure of multiplication of integers. (Contributed by NM, 30-Jul-2004.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ) | ||
Theorem | zltp1le 9374 | Integer ordering relation. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) | ||
Theorem | zleltp1 9375 | Integer ordering relation. (Contributed by NM, 10-May-2004.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 ↔ 𝑀 < (𝑁 + 1))) | ||
Theorem | zlem1lt 9376 | Integer ordering relation. (Contributed by NM, 13-Nov-2004.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 ↔ (𝑀 − 1) < 𝑁)) | ||
Theorem | zltlem1 9377 | Integer ordering relation. (Contributed by NM, 13-Nov-2004.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) | ||
Theorem | zgt0ge1 9378 | An integer greater than 0 is greater than or equal to 1. (Contributed by AV, 14-Oct-2018.) |
⊢ (𝑍 ∈ ℤ → (0 < 𝑍 ↔ 1 ≤ 𝑍)) | ||
Theorem | nnleltp1 9379 | Positive integer ordering relation. (Contributed by NM, 13-Aug-2001.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 ≤ 𝐵 ↔ 𝐴 < (𝐵 + 1))) | ||
Theorem | nnltp1le 9380 | Positive integer ordering relation. (Contributed by NM, 19-Aug-2001.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 < 𝐵 ↔ (𝐴 + 1) ≤ 𝐵)) | ||
Theorem | nnaddm1cl 9381 | Closure of addition of positive integers minus one. (Contributed by NM, 6-Aug-2003.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 + 𝐵) − 1) ∈ ℕ) | ||
Theorem | nn0ltp1le 9382 | Nonnegative integer ordering relation. (Contributed by Raph Levien, 10-Dec-2002.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) | ||
Theorem | nn0leltp1 9383 | Nonnegative integer ordering relation. (Contributed by Raph Levien, 10-Apr-2004.) |
⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 ≤ 𝑁 ↔ 𝑀 < (𝑁 + 1))) | ||
Theorem | nn0ltlem1 9384 | Nonnegative integer ordering relation. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 < 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) | ||
Theorem | znn0sub 9385 | The nonnegative difference of integers is a nonnegative integer. (Generalization of nn0sub 9386.) (Contributed by NM, 14-Jul-2005.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 ↔ (𝑁 − 𝑀) ∈ ℕ0)) | ||
Theorem | nn0sub 9386 | Subtraction of nonnegative integers. (Contributed by NM, 9-May-2004.) |
⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 ≤ 𝑁 ↔ (𝑁 − 𝑀) ∈ ℕ0)) | ||
Theorem | ltsubnn0 9387 | Subtracting a nonnegative integer from a nonnegative integer which is greater than the first one results in a nonnegative integer. (Contributed by Alexander van der Vekens, 6-Apr-2018.) |
⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐵 < 𝐴 → (𝐴 − 𝐵) ∈ ℕ0)) | ||
Theorem | nn0negleid 9388 | A nonnegative integer is greater than or equal to its negative. (Contributed by AV, 13-Aug-2021.) |
⊢ (𝐴 ∈ ℕ0 → -𝐴 ≤ 𝐴) | ||
Theorem | difgtsumgt 9389 | If the difference of a real number and a nonnegative integer is greater than another real number, the sum of the real number and the nonnegative integer is also greater than the other real number. (Contributed by AV, 13-Aug-2021.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ) → (𝐶 < (𝐴 − 𝐵) → 𝐶 < (𝐴 + 𝐵))) | ||
Theorem | nn0n0n1ge2 9390 | A nonnegative integer which is neither 0 nor 1 is greater than or equal to 2. (Contributed by Alexander van der Vekens, 6-Dec-2017.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → 2 ≤ 𝑁) | ||
Theorem | elz2 9391* | Membership in the set of integers. Commonly used in constructions of the integers as equivalence classes under subtraction of the positive integers. (Contributed by Mario Carneiro, 16-May-2014.) |
⊢ (𝑁 ∈ ℤ ↔ ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑁 = (𝑥 − 𝑦)) | ||
Theorem | dfz2 9392 | Alternate definition of the integers, based on elz2 9391. (Contributed by Mario Carneiro, 16-May-2014.) |
⊢ ℤ = ( − “ (ℕ × ℕ)) | ||
Theorem | nn0sub2 9393 | Subtraction of nonnegative integers. (Contributed by NM, 4-Sep-2005.) |
⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁) → (𝑁 − 𝑀) ∈ ℕ0) | ||
Theorem | zapne 9394 | Apartness is equivalent to not equal for integers. (Contributed by Jim Kingdon, 14-Mar-2020.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 # 𝑁 ↔ 𝑀 ≠ 𝑁)) | ||
Theorem | zdceq 9395 | Equality of integers is decidable. (Contributed by Jim Kingdon, 14-Mar-2020.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID 𝐴 = 𝐵) | ||
Theorem | zdcle 9396 | Integer ≤ is decidable. (Contributed by Jim Kingdon, 7-Apr-2020.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID 𝐴 ≤ 𝐵) | ||
Theorem | zdclt 9397 | Integer < is decidable. (Contributed by Jim Kingdon, 1-Jun-2020.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID 𝐴 < 𝐵) | ||
Theorem | zltlen 9398 | Integer 'Less than' expressed in terms of 'less than or equal to'. Also see ltleap 8653 which is a similar result for real numbers. (Contributed by Jim Kingdon, 14-Mar-2020.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≠ 𝐴))) | ||
Theorem | nn0n0n1ge2b 9399 | A nonnegative integer is neither 0 nor 1 if and only if it is greater than or equal to 2. (Contributed by Alexander van der Vekens, 17-Jan-2018.) |
⊢ (𝑁 ∈ ℕ0 → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁)) | ||
Theorem | nn0lt10b 9400 | A nonnegative integer less than 1 is 0. (Contributed by Paul Chapman, 22-Jun-2011.) |
⊢ (𝑁 ∈ ℕ0 → (𝑁 < 1 ↔ 𝑁 = 0)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |