Theorem List for Intuitionistic Logic Explorer - 9301-9400 *Has distinct variable
group(s)
Type | Label | Description |
Statement |
|
Theorem | dfuzi 9301* |
An expression for the upper integers that start at 𝑁 that is
analogous to dfnn2 8859 for positive integers. (Contributed by NM,
6-Jul-2005.) (Proof shortened by Mario Carneiro, 3-May-2014.)
|
⊢ 𝑁 ∈ ℤ
⇒ ⊢ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} = ∩ {𝑥 ∣ (𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
|
Theorem | uzind 9302* |
Induction on the upper integers that start at 𝑀. The first four
hypotheses give us the substitution instances we need; the last two are
the basis and the induction step. (Contributed by NM, 5-Jul-2005.)
|
⊢ (𝑗 = 𝑀 → (𝜑 ↔ 𝜓)) & ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜒)) & ⊢ (𝑗 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) & ⊢ (𝑀 ∈ ℤ → 𝜓) & ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) → (𝜒 → 𝜃)) ⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝜏) |
|
Theorem | uzind2 9303* |
Induction on the upper integers that start after an integer 𝑀.
The first four hypotheses give us the substitution instances we need;
the last two are the basis and the induction step. (Contributed by NM,
25-Jul-2005.)
|
⊢ (𝑗 = (𝑀 + 1) → (𝜑 ↔ 𝜓)) & ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜒)) & ⊢ (𝑗 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) & ⊢ (𝑀 ∈ ℤ → 𝜓) & ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 < 𝑘) → (𝜒 → 𝜃)) ⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → 𝜏) |
|
Theorem | uzind3 9304* |
Induction on the upper integers that start at an integer 𝑀. The
first four hypotheses give us the substitution instances we need, and
the last two are the basis and the induction step. (Contributed by NM,
26-Jul-2005.)
|
⊢ (𝑗 = 𝑀 → (𝜑 ↔ 𝜓)) & ⊢ (𝑗 = 𝑚 → (𝜑 ↔ 𝜒)) & ⊢ (𝑗 = (𝑚 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) & ⊢ (𝑀 ∈ ℤ → 𝜓) & ⊢ ((𝑀 ∈ ℤ ∧ 𝑚 ∈ {𝑘 ∈ ℤ ∣ 𝑀 ≤ 𝑘}) → (𝜒 → 𝜃)) ⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ {𝑘 ∈ ℤ ∣ 𝑀 ≤ 𝑘}) → 𝜏) |
|
Theorem | nn0ind 9305* |
Principle of Mathematical Induction (inference schema) on nonnegative
integers. The first four hypotheses give us the substitution instances
we need; the last two are the basis and the induction step.
(Contributed by NM, 13-May-2004.)
|
⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ (𝑦 ∈ ℕ0
→ (𝜒 → 𝜃)) ⇒ ⊢ (𝐴 ∈ ℕ0 → 𝜏) |
|
Theorem | fzind 9306* |
Induction on the integers from 𝑀 to 𝑁 inclusive . The first
four hypotheses give us the substitution instances we need; the last two
are the basis and the induction step. (Contributed by Paul Chapman,
31-Mar-2011.)
|
⊢ (𝑥 = 𝑀 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐾 → (𝜑 ↔ 𝜏)) & ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝜓)
& ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁)) → (𝜒 → 𝜃)) ⇒ ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)) → 𝜏) |
|
Theorem | fnn0ind 9307* |
Induction on the integers from 0 to 𝑁
inclusive . The first
four hypotheses give us the substitution instances we need; the last two
are the basis and the induction step. (Contributed by Paul Chapman,
31-Mar-2011.)
|
⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐾 → (𝜑 ↔ 𝜏)) & ⊢ (𝑁 ∈ ℕ0
→ 𝜓) & ⊢ ((𝑁 ∈ ℕ0
∧ 𝑦 ∈
ℕ0 ∧ 𝑦 < 𝑁) → (𝜒 → 𝜃)) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0
∧ 𝐾 ≤ 𝑁) → 𝜏) |
|
Theorem | nn0ind-raph 9308* |
Principle of Mathematical Induction (inference schema) on nonnegative
integers. The first four hypotheses give us the substitution instances
we need; the last two are the basis and the induction step. Raph Levien
remarks: "This seems a bit painful. I wonder if an explicit
substitution version would be easier." (Contributed by Raph
Levien,
10-Apr-2004.)
|
⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ (𝑦 ∈ ℕ0
→ (𝜒 → 𝜃)) ⇒ ⊢ (𝐴 ∈ ℕ0 → 𝜏) |
|
Theorem | zindd 9309* |
Principle of Mathematical Induction on all integers, deduction version.
The first five hypotheses give the substitutions; the last three are the
basis, the induction, and the extension to negative numbers.
(Contributed by Paul Chapman, 17-Apr-2009.) (Proof shortened by Mario
Carneiro, 4-Jan-2017.)
|
⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜏)) & ⊢ (𝑥 = -𝑦 → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜂)) & ⊢ (𝜁 → 𝜓)
& ⊢ (𝜁 → (𝑦 ∈ ℕ0 → (𝜒 → 𝜏))) & ⊢ (𝜁 → (𝑦 ∈ ℕ → (𝜒 → 𝜃))) ⇒ ⊢ (𝜁 → (𝐴 ∈ ℤ → 𝜂)) |
|
Theorem | btwnz 9310* |
Any real number can be sandwiched between two integers. Exercise 2 of
[Apostol] p. 28. (Contributed by NM,
10-Nov-2004.)
|
⊢ (𝐴 ∈ ℝ → (∃𝑥 ∈ ℤ 𝑥 < 𝐴 ∧ ∃𝑦 ∈ ℤ 𝐴 < 𝑦)) |
|
Theorem | nn0zd 9311 |
A positive integer is an integer. (Contributed by Mario Carneiro,
28-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈
ℕ0) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℤ) |
|
Theorem | nnzd 9312 |
A nonnegative integer is an integer. (Contributed by Mario Carneiro,
28-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℕ)
⇒ ⊢ (𝜑 → 𝐴 ∈ ℤ) |
|
Theorem | zred 9313 |
An integer is a real number. (Contributed by Mario Carneiro,
28-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℤ)
⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ) |
|
Theorem | zcnd 9314 |
An integer is a complex number. (Contributed by Mario Carneiro,
28-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℤ)
⇒ ⊢ (𝜑 → 𝐴 ∈ ℂ) |
|
Theorem | znegcld 9315 |
Closure law for negative integers. (Contributed by Mario Carneiro,
28-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℤ)
⇒ ⊢ (𝜑 → -𝐴 ∈ ℤ) |
|
Theorem | peano2zd 9316 |
Deduction from second Peano postulate generalized to integers.
(Contributed by Mario Carneiro, 28-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℤ)
⇒ ⊢ (𝜑 → (𝐴 + 1) ∈ ℤ) |
|
Theorem | zaddcld 9317 |
Closure of addition of integers. (Contributed by Mario Carneiro,
28-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ)
⇒ ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℤ) |
|
Theorem | zsubcld 9318 |
Closure of subtraction of integers. (Contributed by Mario Carneiro,
28-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ)
⇒ ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℤ) |
|
Theorem | zmulcld 9319 |
Closure of multiplication of integers. (Contributed by Mario Carneiro,
28-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ)
⇒ ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℤ) |
|
Theorem | zadd2cl 9320 |
Increasing an integer by 2 results in an integer. (Contributed by
Alexander van der Vekens, 16-Sep-2018.)
|
⊢ (𝑁 ∈ ℤ → (𝑁 + 2) ∈ ℤ) |
|
Theorem | btwnapz 9321 |
A number between an integer and its successor is apart from any integer.
(Contributed by Jim Kingdon, 6-Jan-2023.)
|
⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐴 < 𝐵)
& ⊢ (𝜑 → 𝐵 < (𝐴 + 1)) ⇒ ⊢ (𝜑 → 𝐵 # 𝐶) |
|
4.4.10 Decimal arithmetic
|
|
Syntax | cdc 9322 |
Constant used for decimal constructor.
|
class ;𝐴𝐵 |
|
Definition | df-dec 9323 |
Define the "decimal constructor", which is used to build up
"decimal
integers" or "numeric terms" in base 10. For example,
(;;;1000 + ;;;2000) = ;;;3000 1kp2ke3k 13605.
(Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV,
1-Aug-2021.)
|
⊢ ;𝐴𝐵 = (((9 + 1) · 𝐴) + 𝐵) |
|
Theorem | 9p1e10 9324 |
9 + 1 = 10. (Contributed by Mario Carneiro, 18-Apr-2015.) (Revised by
Stanislas Polu, 7-Apr-2020.) (Revised by AV, 1-Aug-2021.)
|
⊢ (9 + 1) = ;10 |
|
Theorem | dfdec10 9325 |
Version of the definition of the "decimal constructor" using ;10
instead of the symbol 10. Of course, this statement cannot be used as
definition, because it uses the "decimal constructor".
(Contributed by
AV, 1-Aug-2021.)
|
⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) |
|
Theorem | deceq1 9326 |
Equality theorem for the decimal constructor. (Contributed by Mario
Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
|
⊢ (𝐴 = 𝐵 → ;𝐴𝐶 = ;𝐵𝐶) |
|
Theorem | deceq2 9327 |
Equality theorem for the decimal constructor. (Contributed by Mario
Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
|
⊢ (𝐴 = 𝐵 → ;𝐶𝐴 = ;𝐶𝐵) |
|
Theorem | deceq1i 9328 |
Equality theorem for the decimal constructor. (Contributed by Mario
Carneiro, 17-Apr-2015.)
|
⊢ 𝐴 = 𝐵 ⇒ ⊢ ;𝐴𝐶 = ;𝐵𝐶 |
|
Theorem | deceq2i 9329 |
Equality theorem for the decimal constructor. (Contributed by Mario
Carneiro, 17-Apr-2015.)
|
⊢ 𝐴 = 𝐵 ⇒ ⊢ ;𝐶𝐴 = ;𝐶𝐵 |
|
Theorem | deceq12i 9330 |
Equality theorem for the decimal constructor. (Contributed by Mario
Carneiro, 17-Apr-2015.)
|
⊢ 𝐴 = 𝐵
& ⊢ 𝐶 = 𝐷 ⇒ ⊢ ;𝐴𝐶 = ;𝐵𝐷 |
|
Theorem | numnncl 9331 |
Closure for a numeral (with units place). (Contributed by Mario
Carneiro, 18-Feb-2014.)
|
⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈
ℕ0
& ⊢ 𝐵 ∈ ℕ
⇒ ⊢ ((𝑇 · 𝐴) + 𝐵) ∈ ℕ |
|
Theorem | num0u 9332 |
Add a zero in the units place. (Contributed by Mario Carneiro,
18-Feb-2014.)
|
⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈
ℕ0 ⇒ ⊢ (𝑇 · 𝐴) = ((𝑇 · 𝐴) + 0) |
|
Theorem | num0h 9333 |
Add a zero in the higher places. (Contributed by Mario Carneiro,
18-Feb-2014.)
|
⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈
ℕ0 ⇒ ⊢ 𝐴 = ((𝑇 · 0) + 𝐴) |
|
Theorem | numcl 9334 |
Closure for a decimal integer (with units place). (Contributed by Mario
Carneiro, 18-Feb-2014.)
|
⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈
ℕ0
& ⊢ 𝐵 ∈
ℕ0 ⇒ ⊢ ((𝑇 · 𝐴) + 𝐵) ∈
ℕ0 |
|
Theorem | numsuc 9335 |
The successor of a decimal integer (no carry). (Contributed by Mario
Carneiro, 18-Feb-2014.)
|
⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈
ℕ0
& ⊢ 𝐵 ∈ ℕ0 & ⊢ (𝐵 + 1) = 𝐶
& ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝐵) ⇒ ⊢ (𝑁 + 1) = ((𝑇 · 𝐴) + 𝐶) |
|
Theorem | deccl 9336 |
Closure for a numeral. (Contributed by Mario Carneiro, 17-Apr-2015.)
(Revised by AV, 6-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0 ⇒ ⊢ ;𝐴𝐵 ∈
ℕ0 |
|
Theorem | 10nn 9337 |
10 is a positive integer. (Contributed by NM, 8-Nov-2012.) (Revised by
AV, 6-Sep-2021.)
|
⊢ ;10 ∈ ℕ |
|
Theorem | 10pos 9338 |
The number 10 is positive. (Contributed by NM, 5-Feb-2007.) (Revised by
AV, 8-Sep-2021.)
|
⊢ 0 < ;10 |
|
Theorem | 10nn0 9339 |
10 is a nonnegative integer. (Contributed by Mario Carneiro,
19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
|
⊢ ;10 ∈ ℕ0 |
|
Theorem | 10re 9340 |
The number 10 is real. (Contributed by NM, 5-Feb-2007.) (Revised by AV,
8-Sep-2021.)
|
⊢ ;10 ∈ ℝ |
|
Theorem | decnncl 9341 |
Closure for a numeral. (Contributed by Mario Carneiro, 17-Apr-2015.)
(Revised by AV, 6-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ ⇒ ⊢ ;𝐴𝐵 ∈ ℕ |
|
Theorem | dec0u 9342 |
Add a zero in the units place. (Contributed by Mario Carneiro,
17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
|
⊢ 𝐴 ∈
ℕ0 ⇒ ⊢ (;10 · 𝐴) = ;𝐴0 |
|
Theorem | dec0h 9343 |
Add a zero in the higher places. (Contributed by Mario Carneiro,
17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
|
⊢ 𝐴 ∈
ℕ0 ⇒ ⊢ 𝐴 = ;0𝐴 |
|
Theorem | numnncl2 9344 |
Closure for a decimal integer (zero units place). (Contributed by Mario
Carneiro, 9-Mar-2015.)
|
⊢ 𝑇 ∈ ℕ & ⊢ 𝐴 ∈
ℕ ⇒ ⊢ ((𝑇 · 𝐴) + 0) ∈ ℕ |
|
Theorem | decnncl2 9345 |
Closure for a decimal integer (zero units place). (Contributed by Mario
Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ
⇒ ⊢ ;𝐴0 ∈ ℕ |
|
Theorem | numlt 9346 |
Comparing two decimal integers (equal higher places). (Contributed by
Mario Carneiro, 18-Feb-2014.)
|
⊢ 𝑇 ∈ ℕ & ⊢ 𝐴 ∈
ℕ0
& ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ & ⊢ 𝐵 < 𝐶 ⇒ ⊢ ((𝑇 · 𝐴) + 𝐵) < ((𝑇 · 𝐴) + 𝐶) |
|
Theorem | numltc 9347 |
Comparing two decimal integers (unequal higher places). (Contributed by
Mario Carneiro, 18-Feb-2014.)
|
⊢ 𝑇 ∈ ℕ & ⊢ 𝐴 ∈
ℕ0
& ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈
ℕ0
& ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐶 < 𝑇
& ⊢ 𝐴 < 𝐵 ⇒ ⊢ ((𝑇 · 𝐴) + 𝐶) < ((𝑇 · 𝐵) + 𝐷) |
|
Theorem | le9lt10 9348 |
A "decimal digit" (i.e. a nonnegative integer less than or equal to
9)
is less then 10. (Contributed by AV, 8-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐴 ≤
9 ⇒ ⊢ 𝐴 < ;10 |
|
Theorem | declt 9349 |
Comparing two decimal integers (equal higher places). (Contributed by
Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ & ⊢ 𝐵 < 𝐶 ⇒ ⊢ ;𝐴𝐵 < ;𝐴𝐶 |
|
Theorem | decltc 9350 |
Comparing two decimal integers (unequal higher places). (Contributed
by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈
ℕ0
& ⊢ 𝐶 < ;10
& ⊢ 𝐴 < 𝐵 ⇒ ⊢ ;𝐴𝐶 < ;𝐵𝐷 |
|
Theorem | declth 9351 |
Comparing two decimal integers (unequal higher places). (Contributed
by AV, 8-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈
ℕ0
& ⊢ 𝐶 ≤ 9 & ⊢ 𝐴 < 𝐵 ⇒ ⊢ ;𝐴𝐶 < ;𝐵𝐷 |
|
Theorem | decsuc 9352 |
The successor of a decimal integer (no carry). (Contributed by Mario
Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ (𝐵 + 1) = 𝐶
& ⊢ 𝑁 = ;𝐴𝐵 ⇒ ⊢ (𝑁 + 1) = ;𝐴𝐶 |
|
Theorem | 3declth 9353 |
Comparing two decimal integers with three "digits" (unequal higher
places). (Contributed by AV, 8-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈
ℕ0
& ⊢ 𝐸 ∈ ℕ0 & ⊢ 𝐹 ∈
ℕ0
& ⊢ 𝐴 < 𝐵
& ⊢ 𝐶 ≤ 9 & ⊢ 𝐸 ≤
9 ⇒ ⊢ ;;𝐴𝐶𝐸 < ;;𝐵𝐷𝐹 |
|
Theorem | 3decltc 9354 |
Comparing two decimal integers with three "digits" (unequal higher
places). (Contributed by AV, 15-Jun-2021.) (Revised by AV,
6-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈
ℕ0
& ⊢ 𝐸 ∈ ℕ0 & ⊢ 𝐹 ∈
ℕ0
& ⊢ 𝐴 < 𝐵
& ⊢ 𝐶 < ;10
& ⊢ 𝐸 < ;10 ⇒ ⊢ ;;𝐴𝐶𝐸 < ;;𝐵𝐷𝐹 |
|
Theorem | decle 9355 |
Comparing two decimal integers (equal higher places). (Contributed by
AV, 17-Aug-2021.) (Revised by AV, 8-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐵 ≤ 𝐶 ⇒ ⊢ ;𝐴𝐵 ≤ ;𝐴𝐶 |
|
Theorem | decleh 9356 |
Comparing two decimal integers (unequal higher places). (Contributed by
AV, 17-Aug-2021.) (Revised by AV, 8-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈
ℕ0
& ⊢ 𝐶 ≤ 9 & ⊢ 𝐴 < 𝐵 ⇒ ⊢ ;𝐴𝐶 ≤ ;𝐵𝐷 |
|
Theorem | declei 9357 |
Comparing a digit to a decimal integer. (Contributed by AV,
17-Aug-2021.)
|
⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐶 ≤
9 ⇒ ⊢ 𝐶 ≤ ;𝐴𝐵 |
|
Theorem | numlti 9358 |
Comparing a digit to a decimal integer. (Contributed by Mario Carneiro,
18-Feb-2014.)
|
⊢ 𝑇 ∈ ℕ & ⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐶 < 𝑇 ⇒ ⊢ 𝐶 < ((𝑇 · 𝐴) + 𝐵) |
|
Theorem | declti 9359 |
Comparing a digit to a decimal integer. (Contributed by Mario
Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐶 < ;10 ⇒ ⊢ 𝐶 < ;𝐴𝐵 |
|
Theorem | decltdi 9360 |
Comparing a digit to a decimal integer. (Contributed by AV,
8-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐶 ≤
9 ⇒ ⊢ 𝐶 < ;𝐴𝐵 |
|
Theorem | numsucc 9361 |
The successor of a decimal integer (with carry). (Contributed by Mario
Carneiro, 18-Feb-2014.)
|
⊢ 𝑌 ∈ ℕ0 & ⊢ 𝑇 = (𝑌 + 1) & ⊢ 𝐴 ∈
ℕ0
& ⊢ (𝐴 + 1) = 𝐵
& ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝑌) ⇒ ⊢ (𝑁 + 1) = ((𝑇 · 𝐵) + 0) |
|
Theorem | decsucc 9362 |
The successor of a decimal integer (with carry). (Contributed by Mario
Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ (𝐴 + 1) = 𝐵
& ⊢ 𝑁 = ;𝐴9 ⇒ ⊢ (𝑁 + 1) = ;𝐵0 |
|
Theorem | 1e0p1 9363 |
The successor of zero. (Contributed by Mario Carneiro, 18-Feb-2014.)
|
⊢ 1 = (0 + 1) |
|
Theorem | dec10p 9364 |
Ten plus an integer. (Contributed by Mario Carneiro, 19-Apr-2015.)
(Revised by AV, 6-Sep-2021.)
|
⊢ (;10 + 𝐴) = ;1𝐴 |
|
Theorem | numma 9365 |
Perform a multiply-add of two decimal integers 𝑀 and 𝑁 against
a fixed multiplicand 𝑃 (no carry). (Contributed by Mario
Carneiro, 18-Feb-2014.)
|
⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈
ℕ0
& ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈
ℕ0
& ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵)
& ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷)
& ⊢ 𝑃 ∈ ℕ0 & ⊢ ((𝐴 · 𝑃) + 𝐶) = 𝐸
& ⊢ ((𝐵 · 𝑃) + 𝐷) = 𝐹 ⇒ ⊢ ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
|
Theorem | nummac 9366 |
Perform a multiply-add of two decimal integers 𝑀 and 𝑁 against
a fixed multiplicand 𝑃 (with carry). (Contributed by Mario
Carneiro, 18-Feb-2014.)
|
⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈
ℕ0
& ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈
ℕ0
& ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵)
& ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷)
& ⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐹 ∈
ℕ0
& ⊢ 𝐺 ∈ ℕ0 & ⊢ ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = 𝐸
& ⊢ ((𝐵 · 𝑃) + 𝐷) = ((𝑇 · 𝐺) + 𝐹) ⇒ ⊢ ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
|
Theorem | numma2c 9367 |
Perform a multiply-add of two decimal integers 𝑀 and 𝑁 against
a fixed multiplicand 𝑃 (with carry). (Contributed by Mario
Carneiro, 18-Feb-2014.)
|
⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈
ℕ0
& ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈
ℕ0
& ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵)
& ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷)
& ⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐹 ∈
ℕ0
& ⊢ 𝐺 ∈ ℕ0 & ⊢ ((𝑃 · 𝐴) + (𝐶 + 𝐺)) = 𝐸
& ⊢ ((𝑃 · 𝐵) + 𝐷) = ((𝑇 · 𝐺) + 𝐹) ⇒ ⊢ ((𝑃 · 𝑀) + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
|
Theorem | numadd 9368 |
Add two decimal integers 𝑀 and 𝑁 (no carry).
(Contributed by
Mario Carneiro, 18-Feb-2014.)
|
⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈
ℕ0
& ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈
ℕ0
& ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵)
& ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷)
& ⊢ (𝐴 + 𝐶) = 𝐸
& ⊢ (𝐵 + 𝐷) = 𝐹 ⇒ ⊢ (𝑀 + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
|
Theorem | numaddc 9369 |
Add two decimal integers 𝑀 and 𝑁 (with carry).
(Contributed
by Mario Carneiro, 18-Feb-2014.)
|
⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈
ℕ0
& ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈
ℕ0
& ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵)
& ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷)
& ⊢ 𝐹 ∈ ℕ0 & ⊢ ((𝐴 + 𝐶) + 1) = 𝐸
& ⊢ (𝐵 + 𝐷) = ((𝑇 · 1) + 𝐹) ⇒ ⊢ (𝑀 + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
|
Theorem | nummul1c 9370 |
The product of a decimal integer with a number. (Contributed by Mario
Carneiro, 18-Feb-2014.)
|
⊢ 𝑇 ∈ ℕ0 & ⊢ 𝑃 ∈
ℕ0
& ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝐵)
& ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐸 ∈
ℕ0
& ⊢ ((𝐴 · 𝑃) + 𝐸) = 𝐶
& ⊢ (𝐵 · 𝑃) = ((𝑇 · 𝐸) + 𝐷) ⇒ ⊢ (𝑁 · 𝑃) = ((𝑇 · 𝐶) + 𝐷) |
|
Theorem | nummul2c 9371 |
The product of a decimal integer with a number (with carry).
(Contributed by Mario Carneiro, 18-Feb-2014.)
|
⊢ 𝑇 ∈ ℕ0 & ⊢ 𝑃 ∈
ℕ0
& ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝐵)
& ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐸 ∈
ℕ0
& ⊢ ((𝑃 · 𝐴) + 𝐸) = 𝐶
& ⊢ (𝑃 · 𝐵) = ((𝑇 · 𝐸) + 𝐷) ⇒ ⊢ (𝑃 · 𝑁) = ((𝑇 · 𝐶) + 𝐷) |
|
Theorem | decma 9372 |
Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed
multiplicand 𝑃 (no carry). (Contributed by Mario
Carneiro,
18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈
ℕ0
& ⊢ 𝑀 = ;𝐴𝐵
& ⊢ 𝑁 = ;𝐶𝐷
& ⊢ 𝑃 ∈ ℕ0 & ⊢ ((𝐴 · 𝑃) + 𝐶) = 𝐸
& ⊢ ((𝐵 · 𝑃) + 𝐷) = 𝐹 ⇒ ⊢ ((𝑀 · 𝑃) + 𝑁) = ;𝐸𝐹 |
|
Theorem | decmac 9373 |
Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed
multiplicand 𝑃 (with carry). (Contributed by Mario
Carneiro,
18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈
ℕ0
& ⊢ 𝑀 = ;𝐴𝐵
& ⊢ 𝑁 = ;𝐶𝐷
& ⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐹 ∈
ℕ0
& ⊢ 𝐺 ∈ ℕ0 & ⊢ ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = 𝐸
& ⊢ ((𝐵 · 𝑃) + 𝐷) = ;𝐺𝐹 ⇒ ⊢ ((𝑀 · 𝑃) + 𝑁) = ;𝐸𝐹 |
|
Theorem | decma2c 9374 |
Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed
multiplier 𝑃 (with carry). (Contributed by Mario
Carneiro,
18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈
ℕ0
& ⊢ 𝑀 = ;𝐴𝐵
& ⊢ 𝑁 = ;𝐶𝐷
& ⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐹 ∈
ℕ0
& ⊢ 𝐺 ∈ ℕ0 & ⊢ ((𝑃 · 𝐴) + (𝐶 + 𝐺)) = 𝐸
& ⊢ ((𝑃 · 𝐵) + 𝐷) = ;𝐺𝐹 ⇒ ⊢ ((𝑃 · 𝑀) + 𝑁) = ;𝐸𝐹 |
|
Theorem | decadd 9375 |
Add two numerals 𝑀 and 𝑁 (no carry).
(Contributed by Mario
Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈
ℕ0
& ⊢ 𝑀 = ;𝐴𝐵
& ⊢ 𝑁 = ;𝐶𝐷
& ⊢ (𝐴 + 𝐶) = 𝐸
& ⊢ (𝐵 + 𝐷) = 𝐹 ⇒ ⊢ (𝑀 + 𝑁) = ;𝐸𝐹 |
|
Theorem | decaddc 9376 |
Add two numerals 𝑀 and 𝑁 (with carry).
(Contributed by Mario
Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈
ℕ0
& ⊢ 𝑀 = ;𝐴𝐵
& ⊢ 𝑁 = ;𝐶𝐷
& ⊢ ((𝐴 + 𝐶) + 1) = 𝐸
& ⊢ 𝐹 ∈ ℕ0 & ⊢ (𝐵 + 𝐷) = ;1𝐹 ⇒ ⊢ (𝑀 + 𝑁) = ;𝐸𝐹 |
|
Theorem | decaddc2 9377 |
Add two numerals 𝑀 and 𝑁 (with carry).
(Contributed by Mario
Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈
ℕ0
& ⊢ 𝑀 = ;𝐴𝐵
& ⊢ 𝑁 = ;𝐶𝐷
& ⊢ ((𝐴 + 𝐶) + 1) = 𝐸
& ⊢ (𝐵 + 𝐷) = ;10 ⇒ ⊢ (𝑀 + 𝑁) = ;𝐸0 |
|
Theorem | decrmanc 9378 |
Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed
multiplicand 𝑃 (no carry). (Contributed by AV,
16-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵
& ⊢ 𝑃 ∈ ℕ0 & ⊢ (𝐴 · 𝑃) = 𝐸
& ⊢ ((𝐵 · 𝑃) + 𝑁) = 𝐹 ⇒ ⊢ ((𝑀 · 𝑃) + 𝑁) = ;𝐸𝐹 |
|
Theorem | decrmac 9379 |
Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed
multiplicand 𝑃 (with carry). (Contributed by AV,
16-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵
& ⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐹 ∈
ℕ0
& ⊢ 𝐺 ∈ ℕ0 & ⊢ ((𝐴 · 𝑃) + 𝐺) = 𝐸
& ⊢ ((𝐵 · 𝑃) + 𝑁) = ;𝐺𝐹 ⇒ ⊢ ((𝑀 · 𝑃) + 𝑁) = ;𝐸𝐹 |
|
Theorem | decaddm10 9380 |
The sum of two multiples of 10 is a multiple of 10. (Contributed by AV,
30-Jul-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0 ⇒ ⊢ (;𝐴0 + ;𝐵0) = ;(𝐴 + 𝐵)0 |
|
Theorem | decaddi 9381 |
Add two numerals 𝑀 and 𝑁 (no carry).
(Contributed by Mario
Carneiro, 18-Feb-2014.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵
& ⊢ (𝐵 + 𝑁) = 𝐶 ⇒ ⊢ (𝑀 + 𝑁) = ;𝐴𝐶 |
|
Theorem | decaddci 9382 |
Add two numerals 𝑀 and 𝑁 (no carry).
(Contributed by Mario
Carneiro, 18-Feb-2014.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵
& ⊢ (𝐴 + 1) = 𝐷
& ⊢ 𝐶 ∈ ℕ0 & ⊢ (𝐵 + 𝑁) = ;1𝐶 ⇒ ⊢ (𝑀 + 𝑁) = ;𝐷𝐶 |
|
Theorem | decaddci2 9383 |
Add two numerals 𝑀 and 𝑁 (no carry).
(Contributed by Mario
Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵
& ⊢ (𝐴 + 1) = 𝐷
& ⊢ (𝐵 + 𝑁) = ;10 ⇒ ⊢ (𝑀 + 𝑁) = ;𝐷0 |
|
Theorem | decsubi 9384 |
Difference between a numeral 𝑀 and a nonnegative integer 𝑁 (no
underflow). (Contributed by AV, 22-Jul-2021.) (Revised by AV,
6-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵
& ⊢ (𝐴 + 1) = 𝐷
& ⊢ (𝐵 − 𝑁) = 𝐶 ⇒ ⊢ (𝑀 − 𝑁) = ;𝐴𝐶 |
|
Theorem | decmul1 9385 |
The product of a numeral with a number (no carry). (Contributed by
AV, 22-Jul-2021.) (Revised by AV, 6-Sep-2021.)
|
⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐴 ∈
ℕ0
& ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑁 = ;𝐴𝐵
& ⊢ 𝐷 ∈ ℕ0 & ⊢ (𝐴 · 𝑃) = 𝐶
& ⊢ (𝐵 · 𝑃) = 𝐷 ⇒ ⊢ (𝑁 · 𝑃) = ;𝐶𝐷 |
|
Theorem | decmul1c 9386 |
The product of a numeral with a number (with carry). (Contributed by
Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
|
⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐴 ∈
ℕ0
& ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑁 = ;𝐴𝐵
& ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐸 ∈
ℕ0
& ⊢ ((𝐴 · 𝑃) + 𝐸) = 𝐶
& ⊢ (𝐵 · 𝑃) = ;𝐸𝐷 ⇒ ⊢ (𝑁 · 𝑃) = ;𝐶𝐷 |
|
Theorem | decmul2c 9387 |
The product of a numeral with a number (with carry). (Contributed by
Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
|
⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐴 ∈
ℕ0
& ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑁 = ;𝐴𝐵
& ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐸 ∈
ℕ0
& ⊢ ((𝑃 · 𝐴) + 𝐸) = 𝐶
& ⊢ (𝑃 · 𝐵) = ;𝐸𝐷 ⇒ ⊢ (𝑃 · 𝑁) = ;𝐶𝐷 |
|
Theorem | decmulnc 9388 |
The product of a numeral with a number (no carry). (Contributed by AV,
15-Jun-2021.)
|
⊢ 𝑁 ∈ ℕ0 & ⊢ 𝐴 ∈
ℕ0
& ⊢ 𝐵 ∈
ℕ0 ⇒ ⊢ (𝑁 · ;𝐴𝐵) = ;(𝑁 · 𝐴)(𝑁 · 𝐵) |
|
Theorem | 11multnc 9389 |
The product of 11 (as numeral) with a number (no carry). (Contributed
by AV, 15-Jun-2021.)
|
⊢ 𝑁 ∈
ℕ0 ⇒ ⊢ (𝑁 · ;11) = ;𝑁𝑁 |
|
Theorem | decmul10add 9390 |
A multiplication of a number and a numeral expressed as addition with
first summand as multiple of 10. (Contributed by AV, 22-Jul-2021.)
(Revised by AV, 6-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝑀 ∈ ℕ0 & ⊢ 𝐸 = (𝑀 · 𝐴)
& ⊢ 𝐹 = (𝑀 · 𝐵) ⇒ ⊢ (𝑀 · ;𝐴𝐵) = (;𝐸0 + 𝐹) |
|
Theorem | 6p5lem 9391 |
Lemma for 6p5e11 9394 and related theorems. (Contributed by Mario
Carneiro, 19-Apr-2015.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐷 ∈
ℕ0
& ⊢ 𝐸 ∈ ℕ0 & ⊢ 𝐵 = (𝐷 + 1) & ⊢ 𝐶 = (𝐸 + 1) & ⊢ (𝐴 + 𝐷) = ;1𝐸 ⇒ ⊢ (𝐴 + 𝐵) = ;1𝐶 |
|
Theorem | 5p5e10 9392 |
5 + 5 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu,
7-Apr-2020.) (Revised by AV, 6-Sep-2021.)
|
⊢ (5 + 5) = ;10 |
|
Theorem | 6p4e10 9393 |
6 + 4 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu,
7-Apr-2020.) (Revised by AV, 6-Sep-2021.)
|
⊢ (6 + 4) = ;10 |
|
Theorem | 6p5e11 9394 |
6 + 5 = 11. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by
AV, 6-Sep-2021.)
|
⊢ (6 + 5) = ;11 |
|
Theorem | 6p6e12 9395 |
6 + 6 = 12. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (6 + 6) = ;12 |
|
Theorem | 7p3e10 9396 |
7 + 3 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu,
7-Apr-2020.) (Revised by AV, 6-Sep-2021.)
|
⊢ (7 + 3) = ;10 |
|
Theorem | 7p4e11 9397 |
7 + 4 = 11. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by
AV, 6-Sep-2021.)
|
⊢ (7 + 4) = ;11 |
|
Theorem | 7p5e12 9398 |
7 + 5 = 12. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (7 + 5) = ;12 |
|
Theorem | 7p6e13 9399 |
7 + 6 = 13. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (7 + 6) = ;13 |
|
Theorem | 7p7e14 9400 |
7 + 7 = 14. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (7 + 7) = ;14 |