Theorem List for Intuitionistic Logic Explorer - 9301-9400 *Has distinct variable
group(s)
Type | Label | Description |
Statement |
|
Theorem | zdivadd 9301 |
Property of divisibility: if 𝐷 divides 𝐴 and 𝐵 then it
divides
𝐴 +
𝐵. (Contributed by
NM, 3-Oct-2008.)
|
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 / 𝐷) ∈ ℤ ∧ (𝐵 / 𝐷) ∈ ℤ)) → ((𝐴 + 𝐵) / 𝐷) ∈ ℤ) |
|
Theorem | zdivmul 9302 |
Property of divisibility: if 𝐷 divides 𝐴 then it divides
𝐵
· 𝐴.
(Contributed by NM, 3-Oct-2008.)
|
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 / 𝐷) ∈ ℤ) → ((𝐵 · 𝐴) / 𝐷) ∈ ℤ) |
|
Theorem | zextle 9303* |
An extensionality-like property for integer ordering. (Contributed by
NM, 29-Oct-2005.)
|
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁)) → 𝑀 = 𝑁) |
|
Theorem | zextlt 9304* |
An extensionality-like property for integer ordering. (Contributed by
NM, 29-Oct-2005.)
|
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘 < 𝑀 ↔ 𝑘 < 𝑁)) → 𝑀 = 𝑁) |
|
Theorem | recnz 9305 |
The reciprocal of a number greater than 1 is not an integer. (Contributed
by NM, 3-May-2005.)
|
⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ¬ (1 / 𝐴) ∈
ℤ) |
|
Theorem | btwnnz 9306 |
A number between an integer and its successor is not an integer.
(Contributed by NM, 3-May-2005.)
|
⊢ ((𝐴 ∈ ℤ ∧ 𝐴 < 𝐵 ∧ 𝐵 < (𝐴 + 1)) → ¬ 𝐵 ∈ ℤ) |
|
Theorem | gtndiv 9307 |
A larger number does not divide a smaller positive integer. (Contributed
by NM, 3-May-2005.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → ¬ (𝐵 / 𝐴) ∈ ℤ) |
|
Theorem | halfnz 9308 |
One-half is not an integer. (Contributed by NM, 31-Jul-2004.)
|
⊢ ¬ (1 / 2) ∈
ℤ |
|
Theorem | 3halfnz 9309 |
Three halves is not an integer. (Contributed by AV, 2-Jun-2020.)
|
⊢ ¬ (3 / 2) ∈
ℤ |
|
Theorem | suprzclex 9310* |
The supremum of a set of integers is an element of the set.
(Contributed by Jim Kingdon, 20-Dec-2021.)
|
⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) & ⊢ (𝜑 → 𝐴 ⊆ ℤ)
⇒ ⊢ (𝜑 → sup(𝐴, ℝ, < ) ∈ 𝐴) |
|
Theorem | prime 9311* |
Two ways to express "𝐴 is a prime number (or 1)".
(Contributed by
NM, 4-May-2005.)
|
⊢ (𝐴 ∈ ℕ → (∀𝑥 ∈ ℕ ((𝐴 / 𝑥) ∈ ℕ → (𝑥 = 1 ∨ 𝑥 = 𝐴)) ↔ ∀𝑥 ∈ ℕ ((1 < 𝑥 ∧ 𝑥 ≤ 𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴))) |
|
Theorem | msqznn 9312 |
The square of a nonzero integer is a positive integer. (Contributed by
NM, 2-Aug-2004.)
|
⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → (𝐴 · 𝐴) ∈ ℕ) |
|
Theorem | zneo 9313 |
No even integer equals an odd integer (i.e. no integer can be both even
and odd). Exercise 10(a) of [Apostol] p.
28. (Contributed by NM,
31-Jul-2004.) (Proof shortened by Mario Carneiro, 18-May-2014.)
|
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 · 𝐴) ≠ ((2 · 𝐵) + 1)) |
|
Theorem | nneoor 9314 |
A positive integer is even or odd. (Contributed by Jim Kingdon,
15-Mar-2020.)
|
⊢ (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ∨ ((𝑁 + 1) / 2) ∈
ℕ)) |
|
Theorem | nneo 9315 |
A positive integer is even or odd but not both. (Contributed by NM,
1-Jan-2006.) (Proof shortened by Mario Carneiro, 18-May-2014.)
|
⊢ (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ↔ ¬ ((𝑁 + 1) / 2) ∈
ℕ)) |
|
Theorem | nneoi 9316 |
A positive integer is even or odd but not both. (Contributed by NM,
20-Aug-2001.)
|
⊢ 𝑁 ∈ ℕ
⇒ ⊢ ((𝑁 / 2) ∈ ℕ ↔ ¬ ((𝑁 + 1) / 2) ∈
ℕ) |
|
Theorem | zeo 9317 |
An integer is even or odd. (Contributed by NM, 1-Jan-2006.)
|
⊢ (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈
ℤ)) |
|
Theorem | zeo2 9318 |
An integer is even or odd but not both. (Contributed by Mario Carneiro,
12-Sep-2015.)
|
⊢ (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ↔ ¬ ((𝑁 + 1) / 2) ∈
ℤ)) |
|
Theorem | peano2uz2 9319* |
Second Peano postulate for upper integers. (Contributed by NM,
3-Oct-2004.)
|
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ {𝑥 ∈ ℤ ∣ 𝐴 ≤ 𝑥}) → (𝐵 + 1) ∈ {𝑥 ∈ ℤ ∣ 𝐴 ≤ 𝑥}) |
|
Theorem | peano5uzti 9320* |
Peano's inductive postulate for upper integers. (Contributed by NM,
6-Jul-2005.) (Revised by Mario Carneiro, 25-Jul-2013.)
|
⊢ (𝑁 ∈ ℤ → ((𝑁 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 + 1) ∈ 𝐴) → {𝑘 ∈ ℤ ∣ 𝑁 ≤ 𝑘} ⊆ 𝐴)) |
|
Theorem | peano5uzi 9321* |
Peano's inductive postulate for upper integers. (Contributed by NM,
6-Jul-2005.) (Revised by Mario Carneiro, 3-May-2014.)
|
⊢ 𝑁 ∈ ℤ
⇒ ⊢ ((𝑁 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 + 1) ∈ 𝐴) → {𝑘 ∈ ℤ ∣ 𝑁 ≤ 𝑘} ⊆ 𝐴) |
|
Theorem | dfuzi 9322* |
An expression for the upper integers that start at 𝑁 that is
analogous to dfnn2 8880 for positive integers. (Contributed by NM,
6-Jul-2005.) (Proof shortened by Mario Carneiro, 3-May-2014.)
|
⊢ 𝑁 ∈ ℤ
⇒ ⊢ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} = ∩ {𝑥 ∣ (𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
|
Theorem | uzind 9323* |
Induction on the upper integers that start at 𝑀. The first four
hypotheses give us the substitution instances we need; the last two are
the basis and the induction step. (Contributed by NM, 5-Jul-2005.)
|
⊢ (𝑗 = 𝑀 → (𝜑 ↔ 𝜓)) & ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜒)) & ⊢ (𝑗 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) & ⊢ (𝑀 ∈ ℤ → 𝜓) & ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) → (𝜒 → 𝜃)) ⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝜏) |
|
Theorem | uzind2 9324* |
Induction on the upper integers that start after an integer 𝑀.
The first four hypotheses give us the substitution instances we need;
the last two are the basis and the induction step. (Contributed by NM,
25-Jul-2005.)
|
⊢ (𝑗 = (𝑀 + 1) → (𝜑 ↔ 𝜓)) & ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜒)) & ⊢ (𝑗 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) & ⊢ (𝑀 ∈ ℤ → 𝜓) & ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 < 𝑘) → (𝜒 → 𝜃)) ⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → 𝜏) |
|
Theorem | uzind3 9325* |
Induction on the upper integers that start at an integer 𝑀. The
first four hypotheses give us the substitution instances we need, and
the last two are the basis and the induction step. (Contributed by NM,
26-Jul-2005.)
|
⊢ (𝑗 = 𝑀 → (𝜑 ↔ 𝜓)) & ⊢ (𝑗 = 𝑚 → (𝜑 ↔ 𝜒)) & ⊢ (𝑗 = (𝑚 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) & ⊢ (𝑀 ∈ ℤ → 𝜓) & ⊢ ((𝑀 ∈ ℤ ∧ 𝑚 ∈ {𝑘 ∈ ℤ ∣ 𝑀 ≤ 𝑘}) → (𝜒 → 𝜃)) ⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ {𝑘 ∈ ℤ ∣ 𝑀 ≤ 𝑘}) → 𝜏) |
|
Theorem | nn0ind 9326* |
Principle of Mathematical Induction (inference schema) on nonnegative
integers. The first four hypotheses give us the substitution instances
we need; the last two are the basis and the induction step.
(Contributed by NM, 13-May-2004.)
|
⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ (𝑦 ∈ ℕ0
→ (𝜒 → 𝜃)) ⇒ ⊢ (𝐴 ∈ ℕ0 → 𝜏) |
|
Theorem | fzind 9327* |
Induction on the integers from 𝑀 to 𝑁 inclusive . The first
four hypotheses give us the substitution instances we need; the last two
are the basis and the induction step. (Contributed by Paul Chapman,
31-Mar-2011.)
|
⊢ (𝑥 = 𝑀 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐾 → (𝜑 ↔ 𝜏)) & ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝜓)
& ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁)) → (𝜒 → 𝜃)) ⇒ ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)) → 𝜏) |
|
Theorem | fnn0ind 9328* |
Induction on the integers from 0 to 𝑁
inclusive . The first
four hypotheses give us the substitution instances we need; the last two
are the basis and the induction step. (Contributed by Paul Chapman,
31-Mar-2011.)
|
⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐾 → (𝜑 ↔ 𝜏)) & ⊢ (𝑁 ∈ ℕ0
→ 𝜓) & ⊢ ((𝑁 ∈ ℕ0
∧ 𝑦 ∈
ℕ0 ∧ 𝑦 < 𝑁) → (𝜒 → 𝜃)) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0
∧ 𝐾 ≤ 𝑁) → 𝜏) |
|
Theorem | nn0ind-raph 9329* |
Principle of Mathematical Induction (inference schema) on nonnegative
integers. The first four hypotheses give us the substitution instances
we need; the last two are the basis and the induction step. Raph Levien
remarks: "This seems a bit painful. I wonder if an explicit
substitution version would be easier." (Contributed by Raph
Levien,
10-Apr-2004.)
|
⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ (𝑦 ∈ ℕ0
→ (𝜒 → 𝜃)) ⇒ ⊢ (𝐴 ∈ ℕ0 → 𝜏) |
|
Theorem | zindd 9330* |
Principle of Mathematical Induction on all integers, deduction version.
The first five hypotheses give the substitutions; the last three are the
basis, the induction, and the extension to negative numbers.
(Contributed by Paul Chapman, 17-Apr-2009.) (Proof shortened by Mario
Carneiro, 4-Jan-2017.)
|
⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜏)) & ⊢ (𝑥 = -𝑦 → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜂)) & ⊢ (𝜁 → 𝜓)
& ⊢ (𝜁 → (𝑦 ∈ ℕ0 → (𝜒 → 𝜏))) & ⊢ (𝜁 → (𝑦 ∈ ℕ → (𝜒 → 𝜃))) ⇒ ⊢ (𝜁 → (𝐴 ∈ ℤ → 𝜂)) |
|
Theorem | btwnz 9331* |
Any real number can be sandwiched between two integers. Exercise 2 of
[Apostol] p. 28. (Contributed by NM,
10-Nov-2004.)
|
⊢ (𝐴 ∈ ℝ → (∃𝑥 ∈ ℤ 𝑥 < 𝐴 ∧ ∃𝑦 ∈ ℤ 𝐴 < 𝑦)) |
|
Theorem | nn0zd 9332 |
A positive integer is an integer. (Contributed by Mario Carneiro,
28-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈
ℕ0) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℤ) |
|
Theorem | nnzd 9333 |
A nonnegative integer is an integer. (Contributed by Mario Carneiro,
28-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℕ)
⇒ ⊢ (𝜑 → 𝐴 ∈ ℤ) |
|
Theorem | zred 9334 |
An integer is a real number. (Contributed by Mario Carneiro,
28-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℤ)
⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ) |
|
Theorem | zcnd 9335 |
An integer is a complex number. (Contributed by Mario Carneiro,
28-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℤ)
⇒ ⊢ (𝜑 → 𝐴 ∈ ℂ) |
|
Theorem | znegcld 9336 |
Closure law for negative integers. (Contributed by Mario Carneiro,
28-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℤ)
⇒ ⊢ (𝜑 → -𝐴 ∈ ℤ) |
|
Theorem | peano2zd 9337 |
Deduction from second Peano postulate generalized to integers.
(Contributed by Mario Carneiro, 28-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℤ)
⇒ ⊢ (𝜑 → (𝐴 + 1) ∈ ℤ) |
|
Theorem | zaddcld 9338 |
Closure of addition of integers. (Contributed by Mario Carneiro,
28-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ)
⇒ ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℤ) |
|
Theorem | zsubcld 9339 |
Closure of subtraction of integers. (Contributed by Mario Carneiro,
28-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ)
⇒ ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℤ) |
|
Theorem | zmulcld 9340 |
Closure of multiplication of integers. (Contributed by Mario Carneiro,
28-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ)
⇒ ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℤ) |
|
Theorem | zadd2cl 9341 |
Increasing an integer by 2 results in an integer. (Contributed by
Alexander van der Vekens, 16-Sep-2018.)
|
⊢ (𝑁 ∈ ℤ → (𝑁 + 2) ∈ ℤ) |
|
Theorem | btwnapz 9342 |
A number between an integer and its successor is apart from any integer.
(Contributed by Jim Kingdon, 6-Jan-2023.)
|
⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐴 < 𝐵)
& ⊢ (𝜑 → 𝐵 < (𝐴 + 1)) ⇒ ⊢ (𝜑 → 𝐵 # 𝐶) |
|
4.4.10 Decimal arithmetic
|
|
Syntax | cdc 9343 |
Constant used for decimal constructor.
|
class ;𝐴𝐵 |
|
Definition | df-dec 9344 |
Define the "decimal constructor", which is used to build up
"decimal
integers" or "numeric terms" in base 10. For example,
(;;;1000 + ;;;2000) = ;;;3000 1kp2ke3k 13759.
(Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV,
1-Aug-2021.)
|
⊢ ;𝐴𝐵 = (((9 + 1) · 𝐴) + 𝐵) |
|
Theorem | 9p1e10 9345 |
9 + 1 = 10. (Contributed by Mario Carneiro, 18-Apr-2015.) (Revised by
Stanislas Polu, 7-Apr-2020.) (Revised by AV, 1-Aug-2021.)
|
⊢ (9 + 1) = ;10 |
|
Theorem | dfdec10 9346 |
Version of the definition of the "decimal constructor" using ;10
instead of the symbol 10. Of course, this statement cannot be used as
definition, because it uses the "decimal constructor".
(Contributed by
AV, 1-Aug-2021.)
|
⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) |
|
Theorem | deceq1 9347 |
Equality theorem for the decimal constructor. (Contributed by Mario
Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
|
⊢ (𝐴 = 𝐵 → ;𝐴𝐶 = ;𝐵𝐶) |
|
Theorem | deceq2 9348 |
Equality theorem for the decimal constructor. (Contributed by Mario
Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
|
⊢ (𝐴 = 𝐵 → ;𝐶𝐴 = ;𝐶𝐵) |
|
Theorem | deceq1i 9349 |
Equality theorem for the decimal constructor. (Contributed by Mario
Carneiro, 17-Apr-2015.)
|
⊢ 𝐴 = 𝐵 ⇒ ⊢ ;𝐴𝐶 = ;𝐵𝐶 |
|
Theorem | deceq2i 9350 |
Equality theorem for the decimal constructor. (Contributed by Mario
Carneiro, 17-Apr-2015.)
|
⊢ 𝐴 = 𝐵 ⇒ ⊢ ;𝐶𝐴 = ;𝐶𝐵 |
|
Theorem | deceq12i 9351 |
Equality theorem for the decimal constructor. (Contributed by Mario
Carneiro, 17-Apr-2015.)
|
⊢ 𝐴 = 𝐵
& ⊢ 𝐶 = 𝐷 ⇒ ⊢ ;𝐴𝐶 = ;𝐵𝐷 |
|
Theorem | numnncl 9352 |
Closure for a numeral (with units place). (Contributed by Mario
Carneiro, 18-Feb-2014.)
|
⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈
ℕ0
& ⊢ 𝐵 ∈ ℕ
⇒ ⊢ ((𝑇 · 𝐴) + 𝐵) ∈ ℕ |
|
Theorem | num0u 9353 |
Add a zero in the units place. (Contributed by Mario Carneiro,
18-Feb-2014.)
|
⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈
ℕ0 ⇒ ⊢ (𝑇 · 𝐴) = ((𝑇 · 𝐴) + 0) |
|
Theorem | num0h 9354 |
Add a zero in the higher places. (Contributed by Mario Carneiro,
18-Feb-2014.)
|
⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈
ℕ0 ⇒ ⊢ 𝐴 = ((𝑇 · 0) + 𝐴) |
|
Theorem | numcl 9355 |
Closure for a decimal integer (with units place). (Contributed by Mario
Carneiro, 18-Feb-2014.)
|
⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈
ℕ0
& ⊢ 𝐵 ∈
ℕ0 ⇒ ⊢ ((𝑇 · 𝐴) + 𝐵) ∈
ℕ0 |
|
Theorem | numsuc 9356 |
The successor of a decimal integer (no carry). (Contributed by Mario
Carneiro, 18-Feb-2014.)
|
⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈
ℕ0
& ⊢ 𝐵 ∈ ℕ0 & ⊢ (𝐵 + 1) = 𝐶
& ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝐵) ⇒ ⊢ (𝑁 + 1) = ((𝑇 · 𝐴) + 𝐶) |
|
Theorem | deccl 9357 |
Closure for a numeral. (Contributed by Mario Carneiro, 17-Apr-2015.)
(Revised by AV, 6-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0 ⇒ ⊢ ;𝐴𝐵 ∈
ℕ0 |
|
Theorem | 10nn 9358 |
10 is a positive integer. (Contributed by NM, 8-Nov-2012.) (Revised by
AV, 6-Sep-2021.)
|
⊢ ;10 ∈ ℕ |
|
Theorem | 10pos 9359 |
The number 10 is positive. (Contributed by NM, 5-Feb-2007.) (Revised by
AV, 8-Sep-2021.)
|
⊢ 0 < ;10 |
|
Theorem | 10nn0 9360 |
10 is a nonnegative integer. (Contributed by Mario Carneiro,
19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
|
⊢ ;10 ∈ ℕ0 |
|
Theorem | 10re 9361 |
The number 10 is real. (Contributed by NM, 5-Feb-2007.) (Revised by AV,
8-Sep-2021.)
|
⊢ ;10 ∈ ℝ |
|
Theorem | decnncl 9362 |
Closure for a numeral. (Contributed by Mario Carneiro, 17-Apr-2015.)
(Revised by AV, 6-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ ⇒ ⊢ ;𝐴𝐵 ∈ ℕ |
|
Theorem | dec0u 9363 |
Add a zero in the units place. (Contributed by Mario Carneiro,
17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
|
⊢ 𝐴 ∈
ℕ0 ⇒ ⊢ (;10 · 𝐴) = ;𝐴0 |
|
Theorem | dec0h 9364 |
Add a zero in the higher places. (Contributed by Mario Carneiro,
17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
|
⊢ 𝐴 ∈
ℕ0 ⇒ ⊢ 𝐴 = ;0𝐴 |
|
Theorem | numnncl2 9365 |
Closure for a decimal integer (zero units place). (Contributed by Mario
Carneiro, 9-Mar-2015.)
|
⊢ 𝑇 ∈ ℕ & ⊢ 𝐴 ∈
ℕ ⇒ ⊢ ((𝑇 · 𝐴) + 0) ∈ ℕ |
|
Theorem | decnncl2 9366 |
Closure for a decimal integer (zero units place). (Contributed by Mario
Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ
⇒ ⊢ ;𝐴0 ∈ ℕ |
|
Theorem | numlt 9367 |
Comparing two decimal integers (equal higher places). (Contributed by
Mario Carneiro, 18-Feb-2014.)
|
⊢ 𝑇 ∈ ℕ & ⊢ 𝐴 ∈
ℕ0
& ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ & ⊢ 𝐵 < 𝐶 ⇒ ⊢ ((𝑇 · 𝐴) + 𝐵) < ((𝑇 · 𝐴) + 𝐶) |
|
Theorem | numltc 9368 |
Comparing two decimal integers (unequal higher places). (Contributed by
Mario Carneiro, 18-Feb-2014.)
|
⊢ 𝑇 ∈ ℕ & ⊢ 𝐴 ∈
ℕ0
& ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈
ℕ0
& ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐶 < 𝑇
& ⊢ 𝐴 < 𝐵 ⇒ ⊢ ((𝑇 · 𝐴) + 𝐶) < ((𝑇 · 𝐵) + 𝐷) |
|
Theorem | le9lt10 9369 |
A "decimal digit" (i.e. a nonnegative integer less than or equal to
9)
is less then 10. (Contributed by AV, 8-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐴 ≤
9 ⇒ ⊢ 𝐴 < ;10 |
|
Theorem | declt 9370 |
Comparing two decimal integers (equal higher places). (Contributed by
Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ & ⊢ 𝐵 < 𝐶 ⇒ ⊢ ;𝐴𝐵 < ;𝐴𝐶 |
|
Theorem | decltc 9371 |
Comparing two decimal integers (unequal higher places). (Contributed
by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈
ℕ0
& ⊢ 𝐶 < ;10
& ⊢ 𝐴 < 𝐵 ⇒ ⊢ ;𝐴𝐶 < ;𝐵𝐷 |
|
Theorem | declth 9372 |
Comparing two decimal integers (unequal higher places). (Contributed
by AV, 8-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈
ℕ0
& ⊢ 𝐶 ≤ 9 & ⊢ 𝐴 < 𝐵 ⇒ ⊢ ;𝐴𝐶 < ;𝐵𝐷 |
|
Theorem | decsuc 9373 |
The successor of a decimal integer (no carry). (Contributed by Mario
Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ (𝐵 + 1) = 𝐶
& ⊢ 𝑁 = ;𝐴𝐵 ⇒ ⊢ (𝑁 + 1) = ;𝐴𝐶 |
|
Theorem | 3declth 9374 |
Comparing two decimal integers with three "digits" (unequal higher
places). (Contributed by AV, 8-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈
ℕ0
& ⊢ 𝐸 ∈ ℕ0 & ⊢ 𝐹 ∈
ℕ0
& ⊢ 𝐴 < 𝐵
& ⊢ 𝐶 ≤ 9 & ⊢ 𝐸 ≤
9 ⇒ ⊢ ;;𝐴𝐶𝐸 < ;;𝐵𝐷𝐹 |
|
Theorem | 3decltc 9375 |
Comparing two decimal integers with three "digits" (unequal higher
places). (Contributed by AV, 15-Jun-2021.) (Revised by AV,
6-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈
ℕ0
& ⊢ 𝐸 ∈ ℕ0 & ⊢ 𝐹 ∈
ℕ0
& ⊢ 𝐴 < 𝐵
& ⊢ 𝐶 < ;10
& ⊢ 𝐸 < ;10 ⇒ ⊢ ;;𝐴𝐶𝐸 < ;;𝐵𝐷𝐹 |
|
Theorem | decle 9376 |
Comparing two decimal integers (equal higher places). (Contributed by
AV, 17-Aug-2021.) (Revised by AV, 8-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐵 ≤ 𝐶 ⇒ ⊢ ;𝐴𝐵 ≤ ;𝐴𝐶 |
|
Theorem | decleh 9377 |
Comparing two decimal integers (unequal higher places). (Contributed by
AV, 17-Aug-2021.) (Revised by AV, 8-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈
ℕ0
& ⊢ 𝐶 ≤ 9 & ⊢ 𝐴 < 𝐵 ⇒ ⊢ ;𝐴𝐶 ≤ ;𝐵𝐷 |
|
Theorem | declei 9378 |
Comparing a digit to a decimal integer. (Contributed by AV,
17-Aug-2021.)
|
⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐶 ≤
9 ⇒ ⊢ 𝐶 ≤ ;𝐴𝐵 |
|
Theorem | numlti 9379 |
Comparing a digit to a decimal integer. (Contributed by Mario Carneiro,
18-Feb-2014.)
|
⊢ 𝑇 ∈ ℕ & ⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐶 < 𝑇 ⇒ ⊢ 𝐶 < ((𝑇 · 𝐴) + 𝐵) |
|
Theorem | declti 9380 |
Comparing a digit to a decimal integer. (Contributed by Mario
Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐶 < ;10 ⇒ ⊢ 𝐶 < ;𝐴𝐵 |
|
Theorem | decltdi 9381 |
Comparing a digit to a decimal integer. (Contributed by AV,
8-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐶 ≤
9 ⇒ ⊢ 𝐶 < ;𝐴𝐵 |
|
Theorem | numsucc 9382 |
The successor of a decimal integer (with carry). (Contributed by Mario
Carneiro, 18-Feb-2014.)
|
⊢ 𝑌 ∈ ℕ0 & ⊢ 𝑇 = (𝑌 + 1) & ⊢ 𝐴 ∈
ℕ0
& ⊢ (𝐴 + 1) = 𝐵
& ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝑌) ⇒ ⊢ (𝑁 + 1) = ((𝑇 · 𝐵) + 0) |
|
Theorem | decsucc 9383 |
The successor of a decimal integer (with carry). (Contributed by Mario
Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ (𝐴 + 1) = 𝐵
& ⊢ 𝑁 = ;𝐴9 ⇒ ⊢ (𝑁 + 1) = ;𝐵0 |
|
Theorem | 1e0p1 9384 |
The successor of zero. (Contributed by Mario Carneiro, 18-Feb-2014.)
|
⊢ 1 = (0 + 1) |
|
Theorem | dec10p 9385 |
Ten plus an integer. (Contributed by Mario Carneiro, 19-Apr-2015.)
(Revised by AV, 6-Sep-2021.)
|
⊢ (;10 + 𝐴) = ;1𝐴 |
|
Theorem | numma 9386 |
Perform a multiply-add of two decimal integers 𝑀 and 𝑁 against
a fixed multiplicand 𝑃 (no carry). (Contributed by Mario
Carneiro, 18-Feb-2014.)
|
⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈
ℕ0
& ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈
ℕ0
& ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵)
& ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷)
& ⊢ 𝑃 ∈ ℕ0 & ⊢ ((𝐴 · 𝑃) + 𝐶) = 𝐸
& ⊢ ((𝐵 · 𝑃) + 𝐷) = 𝐹 ⇒ ⊢ ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
|
Theorem | nummac 9387 |
Perform a multiply-add of two decimal integers 𝑀 and 𝑁 against
a fixed multiplicand 𝑃 (with carry). (Contributed by Mario
Carneiro, 18-Feb-2014.)
|
⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈
ℕ0
& ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈
ℕ0
& ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵)
& ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷)
& ⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐹 ∈
ℕ0
& ⊢ 𝐺 ∈ ℕ0 & ⊢ ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = 𝐸
& ⊢ ((𝐵 · 𝑃) + 𝐷) = ((𝑇 · 𝐺) + 𝐹) ⇒ ⊢ ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
|
Theorem | numma2c 9388 |
Perform a multiply-add of two decimal integers 𝑀 and 𝑁 against
a fixed multiplicand 𝑃 (with carry). (Contributed by Mario
Carneiro, 18-Feb-2014.)
|
⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈
ℕ0
& ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈
ℕ0
& ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵)
& ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷)
& ⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐹 ∈
ℕ0
& ⊢ 𝐺 ∈ ℕ0 & ⊢ ((𝑃 · 𝐴) + (𝐶 + 𝐺)) = 𝐸
& ⊢ ((𝑃 · 𝐵) + 𝐷) = ((𝑇 · 𝐺) + 𝐹) ⇒ ⊢ ((𝑃 · 𝑀) + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
|
Theorem | numadd 9389 |
Add two decimal integers 𝑀 and 𝑁 (no carry).
(Contributed by
Mario Carneiro, 18-Feb-2014.)
|
⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈
ℕ0
& ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈
ℕ0
& ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵)
& ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷)
& ⊢ (𝐴 + 𝐶) = 𝐸
& ⊢ (𝐵 + 𝐷) = 𝐹 ⇒ ⊢ (𝑀 + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
|
Theorem | numaddc 9390 |
Add two decimal integers 𝑀 and 𝑁 (with carry).
(Contributed
by Mario Carneiro, 18-Feb-2014.)
|
⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈
ℕ0
& ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈
ℕ0
& ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵)
& ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷)
& ⊢ 𝐹 ∈ ℕ0 & ⊢ ((𝐴 + 𝐶) + 1) = 𝐸
& ⊢ (𝐵 + 𝐷) = ((𝑇 · 1) + 𝐹) ⇒ ⊢ (𝑀 + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
|
Theorem | nummul1c 9391 |
The product of a decimal integer with a number. (Contributed by Mario
Carneiro, 18-Feb-2014.)
|
⊢ 𝑇 ∈ ℕ0 & ⊢ 𝑃 ∈
ℕ0
& ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝐵)
& ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐸 ∈
ℕ0
& ⊢ ((𝐴 · 𝑃) + 𝐸) = 𝐶
& ⊢ (𝐵 · 𝑃) = ((𝑇 · 𝐸) + 𝐷) ⇒ ⊢ (𝑁 · 𝑃) = ((𝑇 · 𝐶) + 𝐷) |
|
Theorem | nummul2c 9392 |
The product of a decimal integer with a number (with carry).
(Contributed by Mario Carneiro, 18-Feb-2014.)
|
⊢ 𝑇 ∈ ℕ0 & ⊢ 𝑃 ∈
ℕ0
& ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝐵)
& ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐸 ∈
ℕ0
& ⊢ ((𝑃 · 𝐴) + 𝐸) = 𝐶
& ⊢ (𝑃 · 𝐵) = ((𝑇 · 𝐸) + 𝐷) ⇒ ⊢ (𝑃 · 𝑁) = ((𝑇 · 𝐶) + 𝐷) |
|
Theorem | decma 9393 |
Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed
multiplicand 𝑃 (no carry). (Contributed by Mario
Carneiro,
18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈
ℕ0
& ⊢ 𝑀 = ;𝐴𝐵
& ⊢ 𝑁 = ;𝐶𝐷
& ⊢ 𝑃 ∈ ℕ0 & ⊢ ((𝐴 · 𝑃) + 𝐶) = 𝐸
& ⊢ ((𝐵 · 𝑃) + 𝐷) = 𝐹 ⇒ ⊢ ((𝑀 · 𝑃) + 𝑁) = ;𝐸𝐹 |
|
Theorem | decmac 9394 |
Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed
multiplicand 𝑃 (with carry). (Contributed by Mario
Carneiro,
18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈
ℕ0
& ⊢ 𝑀 = ;𝐴𝐵
& ⊢ 𝑁 = ;𝐶𝐷
& ⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐹 ∈
ℕ0
& ⊢ 𝐺 ∈ ℕ0 & ⊢ ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = 𝐸
& ⊢ ((𝐵 · 𝑃) + 𝐷) = ;𝐺𝐹 ⇒ ⊢ ((𝑀 · 𝑃) + 𝑁) = ;𝐸𝐹 |
|
Theorem | decma2c 9395 |
Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed
multiplier 𝑃 (with carry). (Contributed by Mario
Carneiro,
18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈
ℕ0
& ⊢ 𝑀 = ;𝐴𝐵
& ⊢ 𝑁 = ;𝐶𝐷
& ⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐹 ∈
ℕ0
& ⊢ 𝐺 ∈ ℕ0 & ⊢ ((𝑃 · 𝐴) + (𝐶 + 𝐺)) = 𝐸
& ⊢ ((𝑃 · 𝐵) + 𝐷) = ;𝐺𝐹 ⇒ ⊢ ((𝑃 · 𝑀) + 𝑁) = ;𝐸𝐹 |
|
Theorem | decadd 9396 |
Add two numerals 𝑀 and 𝑁 (no carry).
(Contributed by Mario
Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈
ℕ0
& ⊢ 𝑀 = ;𝐴𝐵
& ⊢ 𝑁 = ;𝐶𝐷
& ⊢ (𝐴 + 𝐶) = 𝐸
& ⊢ (𝐵 + 𝐷) = 𝐹 ⇒ ⊢ (𝑀 + 𝑁) = ;𝐸𝐹 |
|
Theorem | decaddc 9397 |
Add two numerals 𝑀 and 𝑁 (with carry).
(Contributed by Mario
Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈
ℕ0
& ⊢ 𝑀 = ;𝐴𝐵
& ⊢ 𝑁 = ;𝐶𝐷
& ⊢ ((𝐴 + 𝐶) + 1) = 𝐸
& ⊢ 𝐹 ∈ ℕ0 & ⊢ (𝐵 + 𝐷) = ;1𝐹 ⇒ ⊢ (𝑀 + 𝑁) = ;𝐸𝐹 |
|
Theorem | decaddc2 9398 |
Add two numerals 𝑀 and 𝑁 (with carry).
(Contributed by Mario
Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈
ℕ0
& ⊢ 𝑀 = ;𝐴𝐵
& ⊢ 𝑁 = ;𝐶𝐷
& ⊢ ((𝐴 + 𝐶) + 1) = 𝐸
& ⊢ (𝐵 + 𝐷) = ;10 ⇒ ⊢ (𝑀 + 𝑁) = ;𝐸0 |
|
Theorem | decrmanc 9399 |
Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed
multiplicand 𝑃 (no carry). (Contributed by AV,
16-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵
& ⊢ 𝑃 ∈ ℕ0 & ⊢ (𝐴 · 𝑃) = 𝐸
& ⊢ ((𝐵 · 𝑃) + 𝑁) = 𝐹 ⇒ ⊢ ((𝑀 · 𝑃) + 𝑁) = ;𝐸𝐹 |
|
Theorem | decrmac 9400 |
Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed
multiplicand 𝑃 (with carry). (Contributed by AV,
16-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵
& ⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐹 ∈
ℕ0
& ⊢ 𝐺 ∈ ℕ0 & ⊢ ((𝐴 · 𝑃) + 𝐺) = 𝐸
& ⊢ ((𝐵 · 𝑃) + 𝑁) = ;𝐺𝐹 ⇒ ⊢ ((𝑀 · 𝑃) + 𝑁) = ;𝐸𝐹 |