HomeHome Intuitionistic Logic Explorer
Theorem List (p. 94 of 164)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 9301-9400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorem2mulicn 9301 (2 · i) ∈ ℂ (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
(2 · i) ∈ ℂ
 
Theoremiap0 9302 The imaginary unit i is apart from zero. (Contributed by Jim Kingdon, 9-Mar-2020.)
i # 0
 
Theorem2muliap0 9303 2 · i is apart from zero. (Contributed by Jim Kingdon, 9-Mar-2020.)
(2 · i) # 0
 
Theorem2muline0 9304 (2 · i) ≠ 0. See also 2muliap0 9303. (Contributed by David A. Wheeler, 8-Dec-2018.)
(2 · i) ≠ 0
 
4.4.5  Simple number properties
 
Theoremhalfcl 9305 Closure of half of a number (common case). (Contributed by NM, 1-Jan-2006.)
(𝐴 ∈ ℂ → (𝐴 / 2) ∈ ℂ)
 
Theoremrehalfcl 9306 Real closure of half. (Contributed by NM, 1-Jan-2006.)
(𝐴 ∈ ℝ → (𝐴 / 2) ∈ ℝ)
 
Theoremhalf0 9307 Half of a number is zero iff the number is zero. (Contributed by NM, 20-Apr-2006.)
(𝐴 ∈ ℂ → ((𝐴 / 2) = 0 ↔ 𝐴 = 0))
 
Theorem2halves 9308 Two halves make a whole. (Contributed by NM, 11-Apr-2005.)
(𝐴 ∈ ℂ → ((𝐴 / 2) + (𝐴 / 2)) = 𝐴)
 
Theoremhalfpos2 9309 A number is positive iff its half is positive. (Contributed by NM, 10-Apr-2005.)
(𝐴 ∈ ℝ → (0 < 𝐴 ↔ 0 < (𝐴 / 2)))
 
Theoremhalfpos 9310 A positive number is greater than its half. (Contributed by NM, 28-Oct-2004.) (Proof shortened by Mario Carneiro, 27-May-2016.)
(𝐴 ∈ ℝ → (0 < 𝐴 ↔ (𝐴 / 2) < 𝐴))
 
Theoremhalfnneg2 9311 A number is nonnegative iff its half is nonnegative. (Contributed by NM, 9-Dec-2005.)
(𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ 0 ≤ (𝐴 / 2)))
 
Theoremhalfaddsubcl 9312 Closure of half-sum and half-difference. (Contributed by Paul Chapman, 12-Oct-2007.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵) / 2) ∈ ℂ ∧ ((𝐴𝐵) / 2) ∈ ℂ))
 
Theoremhalfaddsub 9313 Sum and difference of half-sum and half-difference. (Contributed by Paul Chapman, 12-Oct-2007.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴 + 𝐵) / 2) + ((𝐴𝐵) / 2)) = 𝐴 ∧ (((𝐴 + 𝐵) / 2) − ((𝐴𝐵) / 2)) = 𝐵))
 
Theoremsubhalfhalf 9314 Subtracting the half of a number from the number yields the half of the number. (Contributed by AV, 28-Jun-2021.)
(𝐴 ∈ ℂ → (𝐴 − (𝐴 / 2)) = (𝐴 / 2))
 
Theoremlt2halves 9315 A sum is less than the whole if each term is less than half. (Contributed by NM, 13-Dec-2006.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < (𝐶 / 2) ∧ 𝐵 < (𝐶 / 2)) → (𝐴 + 𝐵) < 𝐶))
 
Theoremaddltmul 9316 Sum is less than product for numbers greater than 2. (Contributed by Stefan Allan, 24-Sep-2010.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (2 < 𝐴 ∧ 2 < 𝐵)) → (𝐴 + 𝐵) < (𝐴 · 𝐵))
 
Theoremnominpos 9317* There is no smallest positive real number. (Contributed by NM, 28-Oct-2004.)
¬ ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ ¬ ∃𝑦 ∈ ℝ (0 < 𝑦𝑦 < 𝑥))
 
Theoremavglt1 9318 Ordering property for average. (Contributed by Mario Carneiro, 28-May-2014.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴 < ((𝐴 + 𝐵) / 2)))
 
Theoremavglt2 9319 Ordering property for average. (Contributed by Mario Carneiro, 28-May-2014.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < 𝐵))
 
Theoremavgle1 9320 Ordering property for average. (Contributed by Mario Carneiro, 28-May-2014.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵𝐴 ≤ ((𝐴 + 𝐵) / 2)))
 
Theoremavgle2 9321 Ordering property for average. (Contributed by Jeff Hankins, 15-Sep-2013.) (Revised by Mario Carneiro, 28-May-2014.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ((𝐴 + 𝐵) / 2) ≤ 𝐵))
 
Theorem2timesd 9322 Two times a number. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (2 · 𝐴) = (𝐴 + 𝐴))
 
Theoremtimes2d 9323 A number times 2. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (𝐴 · 2) = (𝐴 + 𝐴))
 
Theoremhalfcld 9324 Closure of half of a number (frequently used special case). (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (𝐴 / 2) ∈ ℂ)
 
Theorem2halvesd 9325 Two halves make a whole. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → ((𝐴 / 2) + (𝐴 / 2)) = 𝐴)
 
Theoremrehalfcld 9326 Real closure of half. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)       (𝜑 → (𝐴 / 2) ∈ ℝ)
 
Theoremlt2halvesd 9327 A sum is less than the whole if each term is less than half. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐴 < (𝐶 / 2))    &   (𝜑𝐵 < (𝐶 / 2))       (𝜑 → (𝐴 + 𝐵) < 𝐶)
 
Theoremrehalfcli 9328 Half a real number is real. Inference form. (Contributed by David Moews, 28-Feb-2017.)
𝐴 ∈ ℝ       (𝐴 / 2) ∈ ℝ
 
Theoremadd1p1 9329 Adding two times 1 to a number. (Contributed by AV, 22-Sep-2018.)
(𝑁 ∈ ℂ → ((𝑁 + 1) + 1) = (𝑁 + 2))
 
Theoremsub1m1 9330 Subtracting two times 1 from a number. (Contributed by AV, 23-Oct-2018.)
(𝑁 ∈ ℂ → ((𝑁 − 1) − 1) = (𝑁 − 2))
 
Theoremcnm2m1cnm3 9331 Subtracting 2 and afterwards 1 from a number results in the difference between the number and 3. (Contributed by Alexander van der Vekens, 16-Sep-2018.)
(𝐴 ∈ ℂ → ((𝐴 − 2) − 1) = (𝐴 − 3))
 
Theoremxp1d2m1eqxm1d2 9332 A complex number increased by 1, then divided by 2, then decreased by 1 equals the complex number decreased by 1 and then divided by 2. (Contributed by AV, 24-May-2020.)
(𝑋 ∈ ℂ → (((𝑋 + 1) / 2) − 1) = ((𝑋 − 1) / 2))
 
Theoremdiv4p1lem1div2 9333 An integer greater than 5, divided by 4 and increased by 1, is less than or equal to the half of the integer minus 1. (Contributed by AV, 8-Jul-2021.)
((𝑁 ∈ ℝ ∧ 6 ≤ 𝑁) → ((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2))
 
4.4.6  The Archimedean property
 
Theoremarch 9334* Archimedean property of real numbers. For any real number, there is an integer greater than it. Theorem I.29 of [Apostol] p. 26. (Contributed by NM, 21-Jan-1997.)
(𝐴 ∈ ℝ → ∃𝑛 ∈ ℕ 𝐴 < 𝑛)
 
Theoremnnrecl 9335* There exists a positive integer whose reciprocal is less than a given positive real. Exercise 3 of [Apostol] p. 28. (Contributed by NM, 8-Nov-2004.)
((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑛 ∈ ℕ (1 / 𝑛) < 𝐴)
 
Theorembndndx 9336* A bounded real sequence 𝐴(𝑘) is less than or equal to at least one of its indices. (Contributed by NM, 18-Jan-2008.)
(∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (𝐴 ∈ ℝ ∧ 𝐴𝑥) → ∃𝑘 ∈ ℕ 𝐴𝑘)
 
4.4.7  Nonnegative integers (as a subset of complex numbers)
 
Syntaxcn0 9337 Extend class notation to include the class of nonnegative integers.
class 0
 
Definitiondf-n0 9338 Define the set of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.)
0 = (ℕ ∪ {0})
 
Theoremelnn0 9339 Nonnegative integers expressed in terms of naturals and zero. (Contributed by Raph Levien, 10-Dec-2002.)
(𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0))
 
Theoremnnssnn0 9340 Positive naturals are a subset of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.)
ℕ ⊆ ℕ0
 
Theoremnn0ssre 9341 Nonnegative integers are a subset of the reals. (Contributed by Raph Levien, 10-Dec-2002.)
0 ⊆ ℝ
 
Theoremnn0sscn 9342 Nonnegative integers are a subset of the complex numbers.) (Contributed by NM, 9-May-2004.)
0 ⊆ ℂ
 
Theoremnn0ex 9343 The set of nonnegative integers exists. (Contributed by NM, 18-Jul-2004.)
0 ∈ V
 
Theoremnnnn0 9344 A positive integer is a nonnegative integer. (Contributed by NM, 9-May-2004.)
(𝐴 ∈ ℕ → 𝐴 ∈ ℕ0)
 
Theoremnnnn0i 9345 A positive integer is a nonnegative integer. (Contributed by NM, 20-Jun-2005.)
𝑁 ∈ ℕ       𝑁 ∈ ℕ0
 
Theoremnn0re 9346 A nonnegative integer is a real number. (Contributed by NM, 9-May-2004.)
(𝐴 ∈ ℕ0𝐴 ∈ ℝ)
 
Theoremnn0cn 9347 A nonnegative integer is a complex number. (Contributed by NM, 9-May-2004.)
(𝐴 ∈ ℕ0𝐴 ∈ ℂ)
 
Theoremnn0rei 9348 A nonnegative integer is a real number. (Contributed by NM, 14-May-2003.)
𝐴 ∈ ℕ0       𝐴 ∈ ℝ
 
Theoremnn0cni 9349 A nonnegative integer is a complex number. (Contributed by NM, 14-May-2003.)
𝐴 ∈ ℕ0       𝐴 ∈ ℂ
 
Theoremdfn2 9350 The set of positive integers defined in terms of nonnegative integers. (Contributed by NM, 23-Sep-2007.) (Proof shortened by Mario Carneiro, 13-Feb-2013.)
ℕ = (ℕ0 ∖ {0})
 
Theoremelnnne0 9351 The positive integer property expressed in terms of difference from zero. (Contributed by Stefan O'Rear, 12-Sep-2015.)
(𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0𝑁 ≠ 0))
 
Theorem0nn0 9352 0 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.)
0 ∈ ℕ0
 
Theorem1nn0 9353 1 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.)
1 ∈ ℕ0
 
Theorem2nn0 9354 2 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.)
2 ∈ ℕ0
 
Theorem3nn0 9355 3 is a nonnegative integer. (Contributed by Mario Carneiro, 18-Feb-2014.)
3 ∈ ℕ0
 
Theorem4nn0 9356 4 is a nonnegative integer. (Contributed by Mario Carneiro, 18-Feb-2014.)
4 ∈ ℕ0
 
Theorem5nn0 9357 5 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.)
5 ∈ ℕ0
 
Theorem6nn0 9358 6 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.)
6 ∈ ℕ0
 
Theorem7nn0 9359 7 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.)
7 ∈ ℕ0
 
Theorem8nn0 9360 8 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.)
8 ∈ ℕ0
 
Theorem9nn0 9361 9 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.)
9 ∈ ℕ0
 
Theoremnn0ge0 9362 A nonnegative integer is greater than or equal to zero. (Contributed by NM, 9-May-2004.) (Revised by Mario Carneiro, 16-May-2014.)
(𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
 
Theoremnn0nlt0 9363 A nonnegative integer is not less than zero. (Contributed by NM, 9-May-2004.) (Revised by Mario Carneiro, 27-May-2016.)
(𝐴 ∈ ℕ0 → ¬ 𝐴 < 0)
 
Theoremnn0ge0i 9364 Nonnegative integers are nonnegative. (Contributed by Raph Levien, 10-Dec-2002.)
𝑁 ∈ ℕ0       0 ≤ 𝑁
 
Theoremnn0le0eq0 9365 A nonnegative integer is less than or equal to zero iff it is equal to zero. (Contributed by NM, 9-Dec-2005.)
(𝑁 ∈ ℕ0 → (𝑁 ≤ 0 ↔ 𝑁 = 0))
 
Theoremnn0p1gt0 9366 A nonnegative integer increased by 1 is greater than 0. (Contributed by Alexander van der Vekens, 3-Oct-2018.)
(𝑁 ∈ ℕ0 → 0 < (𝑁 + 1))
 
Theoremnnnn0addcl 9367 A positive integer plus a nonnegative integer is a positive integer. (Contributed by NM, 20-Apr-2005.) (Proof shortened by Mario Carneiro, 16-May-2014.)
((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ)
 
Theoremnn0nnaddcl 9368 A nonnegative integer plus a positive integer is a positive integer. (Contributed by NM, 22-Dec-2005.)
((𝑀 ∈ ℕ0𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ)
 
Theorem0mnnnnn0 9369 The result of subtracting a positive integer from 0 is not a nonnegative integer. (Contributed by Alexander van der Vekens, 19-Mar-2018.)
(𝑁 ∈ ℕ → (0 − 𝑁) ∉ ℕ0)
 
Theoremun0addcl 9370 If 𝑆 is closed under addition, then so is 𝑆 ∪ {0}. (Contributed by Mario Carneiro, 17-Jul-2014.)
(𝜑𝑆 ⊆ ℂ)    &   𝑇 = (𝑆 ∪ {0})    &   ((𝜑 ∧ (𝑀𝑆𝑁𝑆)) → (𝑀 + 𝑁) ∈ 𝑆)       ((𝜑 ∧ (𝑀𝑇𝑁𝑇)) → (𝑀 + 𝑁) ∈ 𝑇)
 
Theoremun0mulcl 9371 If 𝑆 is closed under multiplication, then so is 𝑆 ∪ {0}. (Contributed by Mario Carneiro, 17-Jul-2014.)
(𝜑𝑆 ⊆ ℂ)    &   𝑇 = (𝑆 ∪ {0})    &   ((𝜑 ∧ (𝑀𝑆𝑁𝑆)) → (𝑀 · 𝑁) ∈ 𝑆)       ((𝜑 ∧ (𝑀𝑇𝑁𝑇)) → (𝑀 · 𝑁) ∈ 𝑇)
 
Theoremnn0addcl 9372 Closure of addition of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.) (Proof shortened by Mario Carneiro, 17-Jul-2014.)
((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ0)
 
Theoremnn0mulcl 9373 Closure of multiplication of nonnegative integers. (Contributed by NM, 22-Jul-2004.) (Proof shortened by Mario Carneiro, 17-Jul-2014.)
((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 · 𝑁) ∈ ℕ0)
 
Theoremnn0addcli 9374 Closure of addition of nonnegative integers, inference form. (Contributed by Raph Levien, 10-Dec-2002.)
𝑀 ∈ ℕ0    &   𝑁 ∈ ℕ0       (𝑀 + 𝑁) ∈ ℕ0
 
Theoremnn0mulcli 9375 Closure of multiplication of nonnegative integers, inference form. (Contributed by Raph Levien, 10-Dec-2002.)
𝑀 ∈ ℕ0    &   𝑁 ∈ ℕ0       (𝑀 · 𝑁) ∈ ℕ0
 
Theoremnn0p1nn 9376 A nonnegative integer plus 1 is a positive integer. (Contributed by Raph Levien, 30-Jun-2006.) (Revised by Mario Carneiro, 16-May-2014.)
(𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
 
Theorempeano2nn0 9377 Second Peano postulate for nonnegative integers. (Contributed by NM, 9-May-2004.)
(𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
 
Theoremnnm1nn0 9378 A positive integer minus 1 is a nonnegative integer. (Contributed by Jason Orendorff, 24-Jan-2007.) (Revised by Mario Carneiro, 16-May-2014.)
(𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
 
Theoremelnn0nn 9379 The nonnegative integer property expressed in terms of positive integers. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.)
(𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℂ ∧ (𝑁 + 1) ∈ ℕ))
 
Theoremelnnnn0 9380 The positive integer property expressed in terms of nonnegative integers. (Contributed by NM, 10-May-2004.)
(𝑁 ∈ ℕ ↔ (𝑁 ∈ ℂ ∧ (𝑁 − 1) ∈ ℕ0))
 
Theoremelnnnn0b 9381 The positive integer property expressed in terms of nonnegative integers. (Contributed by NM, 1-Sep-2005.)
(𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 0 < 𝑁))
 
Theoremelnnnn0c 9382 The positive integer property expressed in terms of nonnegative integers. (Contributed by NM, 10-Jan-2006.)
(𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁))
 
Theoremnn0addge1 9383 A number is less than or equal to itself plus a nonnegative integer. (Contributed by NM, 10-Mar-2005.)
((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → 𝐴 ≤ (𝐴 + 𝑁))
 
Theoremnn0addge2 9384 A number is less than or equal to itself plus a nonnegative integer. (Contributed by NM, 10-Mar-2005.)
((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → 𝐴 ≤ (𝑁 + 𝐴))
 
Theoremnn0addge1i 9385 A number is less than or equal to itself plus a nonnegative integer. (Contributed by NM, 10-Mar-2005.)
𝐴 ∈ ℝ    &   𝑁 ∈ ℕ0       𝐴 ≤ (𝐴 + 𝑁)
 
Theoremnn0addge2i 9386 A number is less than or equal to itself plus a nonnegative integer. (Contributed by NM, 10-Mar-2005.)
𝐴 ∈ ℝ    &   𝑁 ∈ ℕ0       𝐴 ≤ (𝑁 + 𝐴)
 
Theoremnn0le2xi 9387 A nonnegative integer is less than or equal to twice itself. (Contributed by Raph Levien, 10-Dec-2002.)
𝑁 ∈ ℕ0       𝑁 ≤ (2 · 𝑁)
 
Theoremnn0lele2xi 9388 'Less than or equal to' implies 'less than or equal to twice' for nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.)
𝑀 ∈ ℕ0    &   𝑁 ∈ ℕ0       (𝑁𝑀𝑁 ≤ (2 · 𝑀))
 
Theoremnn0supp 9389 Two ways to write the support of a function on 0. (Contributed by Mario Carneiro, 29-Dec-2014.)
(𝐹:𝐼⟶ℕ0 → (𝐹 “ (V ∖ {0})) = (𝐹 “ ℕ))
 
Theoremnnnn0d 9390 A positive integer is a nonnegative integer. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℕ)       (𝜑𝐴 ∈ ℕ0)
 
Theoremnn0red 9391 A nonnegative integer is a real number. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℕ0)       (𝜑𝐴 ∈ ℝ)
 
Theoremnn0cnd 9392 A nonnegative integer is a complex number. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℕ0)       (𝜑𝐴 ∈ ℂ)
 
Theoremnn0ge0d 9393 A nonnegative integer is greater than or equal to zero. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℕ0)       (𝜑 → 0 ≤ 𝐴)
 
Theoremnn0addcld 9394 Closure of addition of nonnegative integers, inference form. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℕ0)    &   (𝜑𝐵 ∈ ℕ0)       (𝜑 → (𝐴 + 𝐵) ∈ ℕ0)
 
Theoremnn0mulcld 9395 Closure of multiplication of nonnegative integers, inference form. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℕ0)    &   (𝜑𝐵 ∈ ℕ0)       (𝜑 → (𝐴 · 𝐵) ∈ ℕ0)
 
Theoremnn0readdcl 9396 Closure law for addition of reals, restricted to nonnegative integers. (Contributed by Alexander van der Vekens, 6-Apr-2018.)
((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 + 𝐵) ∈ ℝ)
 
Theoremnn0ge2m1nn 9397 If a nonnegative integer is greater than or equal to two, the integer decreased by 1 is a positive integer. (Contributed by Alexander van der Vekens, 1-Aug-2018.) (Revised by AV, 4-Jan-2020.)
((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ)
 
Theoremnn0ge2m1nn0 9398 If a nonnegative integer is greater than or equal to two, the integer decreased by 1 is also a nonnegative integer. (Contributed by Alexander van der Vekens, 1-Aug-2018.)
((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ0)
 
Theoremnn0nndivcl 9399 Closure law for dividing of a nonnegative integer by a positive integer. (Contributed by Alexander van der Vekens, 14-Apr-2018.)
((𝐾 ∈ ℕ0𝐿 ∈ ℕ) → (𝐾 / 𝐿) ∈ ℝ)
 
4.4.8  Extended nonnegative integers

The function values of the hash (set size) function are either nonnegative integers or positive infinity. To avoid the need to distinguish between finite and infinite sets (and therefore if the set size is a nonnegative integer or positive infinity), it is useful to provide a definition of the set of nonnegative integers extended by positive infinity, analogously to the extension of the real numbers *, see df-xr 8153.

 
Syntaxcxnn0 9400 The set of extended nonnegative integers.
class 0*
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16363
  Copyright terms: Public domain < Previous  Next >