HomeHome Intuitionistic Logic Explorer
Theorem List (p. 94 of 159)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 9301-9400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremnn0addcl 9301 Closure of addition of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.) (Proof shortened by Mario Carneiro, 17-Jul-2014.)
((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ0)
 
Theoremnn0mulcl 9302 Closure of multiplication of nonnegative integers. (Contributed by NM, 22-Jul-2004.) (Proof shortened by Mario Carneiro, 17-Jul-2014.)
((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 · 𝑁) ∈ ℕ0)
 
Theoremnn0addcli 9303 Closure of addition of nonnegative integers, inference form. (Contributed by Raph Levien, 10-Dec-2002.)
𝑀 ∈ ℕ0    &   𝑁 ∈ ℕ0       (𝑀 + 𝑁) ∈ ℕ0
 
Theoremnn0mulcli 9304 Closure of multiplication of nonnegative integers, inference form. (Contributed by Raph Levien, 10-Dec-2002.)
𝑀 ∈ ℕ0    &   𝑁 ∈ ℕ0       (𝑀 · 𝑁) ∈ ℕ0
 
Theoremnn0p1nn 9305 A nonnegative integer plus 1 is a positive integer. (Contributed by Raph Levien, 30-Jun-2006.) (Revised by Mario Carneiro, 16-May-2014.)
(𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
 
Theorempeano2nn0 9306 Second Peano postulate for nonnegative integers. (Contributed by NM, 9-May-2004.)
(𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
 
Theoremnnm1nn0 9307 A positive integer minus 1 is a nonnegative integer. (Contributed by Jason Orendorff, 24-Jan-2007.) (Revised by Mario Carneiro, 16-May-2014.)
(𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
 
Theoremelnn0nn 9308 The nonnegative integer property expressed in terms of positive integers. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.)
(𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℂ ∧ (𝑁 + 1) ∈ ℕ))
 
Theoremelnnnn0 9309 The positive integer property expressed in terms of nonnegative integers. (Contributed by NM, 10-May-2004.)
(𝑁 ∈ ℕ ↔ (𝑁 ∈ ℂ ∧ (𝑁 − 1) ∈ ℕ0))
 
Theoremelnnnn0b 9310 The positive integer property expressed in terms of nonnegative integers. (Contributed by NM, 1-Sep-2005.)
(𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 0 < 𝑁))
 
Theoremelnnnn0c 9311 The positive integer property expressed in terms of nonnegative integers. (Contributed by NM, 10-Jan-2006.)
(𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁))
 
Theoremnn0addge1 9312 A number is less than or equal to itself plus a nonnegative integer. (Contributed by NM, 10-Mar-2005.)
((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → 𝐴 ≤ (𝐴 + 𝑁))
 
Theoremnn0addge2 9313 A number is less than or equal to itself plus a nonnegative integer. (Contributed by NM, 10-Mar-2005.)
((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → 𝐴 ≤ (𝑁 + 𝐴))
 
Theoremnn0addge1i 9314 A number is less than or equal to itself plus a nonnegative integer. (Contributed by NM, 10-Mar-2005.)
𝐴 ∈ ℝ    &   𝑁 ∈ ℕ0       𝐴 ≤ (𝐴 + 𝑁)
 
Theoremnn0addge2i 9315 A number is less than or equal to itself plus a nonnegative integer. (Contributed by NM, 10-Mar-2005.)
𝐴 ∈ ℝ    &   𝑁 ∈ ℕ0       𝐴 ≤ (𝑁 + 𝐴)
 
Theoremnn0le2xi 9316 A nonnegative integer is less than or equal to twice itself. (Contributed by Raph Levien, 10-Dec-2002.)
𝑁 ∈ ℕ0       𝑁 ≤ (2 · 𝑁)
 
Theoremnn0lele2xi 9317 'Less than or equal to' implies 'less than or equal to twice' for nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.)
𝑀 ∈ ℕ0    &   𝑁 ∈ ℕ0       (𝑁𝑀𝑁 ≤ (2 · 𝑀))
 
Theoremnn0supp 9318 Two ways to write the support of a function on 0. (Contributed by Mario Carneiro, 29-Dec-2014.)
(𝐹:𝐼⟶ℕ0 → (𝐹 “ (V ∖ {0})) = (𝐹 “ ℕ))
 
Theoremnnnn0d 9319 A positive integer is a nonnegative integer. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℕ)       (𝜑𝐴 ∈ ℕ0)
 
Theoremnn0red 9320 A nonnegative integer is a real number. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℕ0)       (𝜑𝐴 ∈ ℝ)
 
Theoremnn0cnd 9321 A nonnegative integer is a complex number. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℕ0)       (𝜑𝐴 ∈ ℂ)
 
Theoremnn0ge0d 9322 A nonnegative integer is greater than or equal to zero. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℕ0)       (𝜑 → 0 ≤ 𝐴)
 
Theoremnn0addcld 9323 Closure of addition of nonnegative integers, inference form. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℕ0)    &   (𝜑𝐵 ∈ ℕ0)       (𝜑 → (𝐴 + 𝐵) ∈ ℕ0)
 
Theoremnn0mulcld 9324 Closure of multiplication of nonnegative integers, inference form. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℕ0)    &   (𝜑𝐵 ∈ ℕ0)       (𝜑 → (𝐴 · 𝐵) ∈ ℕ0)
 
Theoremnn0readdcl 9325 Closure law for addition of reals, restricted to nonnegative integers. (Contributed by Alexander van der Vekens, 6-Apr-2018.)
((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 + 𝐵) ∈ ℝ)
 
Theoremnn0ge2m1nn 9326 If a nonnegative integer is greater than or equal to two, the integer decreased by 1 is a positive integer. (Contributed by Alexander van der Vekens, 1-Aug-2018.) (Revised by AV, 4-Jan-2020.)
((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ)
 
Theoremnn0ge2m1nn0 9327 If a nonnegative integer is greater than or equal to two, the integer decreased by 1 is also a nonnegative integer. (Contributed by Alexander van der Vekens, 1-Aug-2018.)
((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ0)
 
Theoremnn0nndivcl 9328 Closure law for dividing of a nonnegative integer by a positive integer. (Contributed by Alexander van der Vekens, 14-Apr-2018.)
((𝐾 ∈ ℕ0𝐿 ∈ ℕ) → (𝐾 / 𝐿) ∈ ℝ)
 
4.4.8  Extended nonnegative integers

The function values of the hash (set size) function are either nonnegative integers or positive infinity. To avoid the need to distinguish between finite and infinite sets (and therefore if the set size is a nonnegative integer or positive infinity), it is useful to provide a definition of the set of nonnegative integers extended by positive infinity, analogously to the extension of the real numbers *, see df-xr 8082.

 
Syntaxcxnn0 9329 The set of extended nonnegative integers.
class 0*
 
Definitiondf-xnn0 9330 Define the set of extended nonnegative integers that includes positive infinity. Analogue of the extension of the real numbers *, see df-xr 8082. If we assumed excluded middle, this would be essentially the same as as defined at df-nninf 7195 but in its absence the relationship between the two is more complicated. (Contributed by AV, 10-Dec-2020.)
0* = (ℕ0 ∪ {+∞})
 
Theoremelxnn0 9331 An extended nonnegative integer is either a standard nonnegative integer or positive infinity. (Contributed by AV, 10-Dec-2020.)
(𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0𝐴 = +∞))
 
Theoremnn0ssxnn0 9332 The standard nonnegative integers are a subset of the extended nonnegative integers. (Contributed by AV, 10-Dec-2020.)
0 ⊆ ℕ0*
 
Theoremnn0xnn0 9333 A standard nonnegative integer is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.)
(𝐴 ∈ ℕ0𝐴 ∈ ℕ0*)
 
Theoremxnn0xr 9334 An extended nonnegative integer is an extended real. (Contributed by AV, 10-Dec-2020.)
(𝐴 ∈ ℕ0*𝐴 ∈ ℝ*)
 
Theorem0xnn0 9335 Zero is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.)
0 ∈ ℕ0*
 
Theorempnf0xnn0 9336 Positive infinity is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.)
+∞ ∈ ℕ0*
 
Theoremnn0nepnf 9337 No standard nonnegative integer equals positive infinity. (Contributed by AV, 10-Dec-2020.)
(𝐴 ∈ ℕ0𝐴 ≠ +∞)
 
Theoremnn0xnn0d 9338 A standard nonnegative integer is an extended nonnegative integer, deduction form. (Contributed by AV, 10-Dec-2020.)
(𝜑𝐴 ∈ ℕ0)       (𝜑𝐴 ∈ ℕ0*)
 
Theoremnn0nepnfd 9339 No standard nonnegative integer equals positive infinity, deduction form. (Contributed by AV, 10-Dec-2020.)
(𝜑𝐴 ∈ ℕ0)       (𝜑𝐴 ≠ +∞)
 
Theoremxnn0nemnf 9340 No extended nonnegative integer equals negative infinity. (Contributed by AV, 10-Dec-2020.)
(𝐴 ∈ ℕ0*𝐴 ≠ -∞)
 
Theoremxnn0xrnemnf 9341 The extended nonnegative integers are extended reals without negative infinity. (Contributed by AV, 10-Dec-2020.)
(𝐴 ∈ ℕ0* → (𝐴 ∈ ℝ*𝐴 ≠ -∞))
 
Theoremxnn0nnn0pnf 9342 An extended nonnegative integer which is not a standard nonnegative integer is positive infinity. (Contributed by AV, 10-Dec-2020.)
((𝑁 ∈ ℕ0* ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 = +∞)
 
4.4.9  Integers (as a subset of complex numbers)
 
Syntaxcz 9343 Extend class notation to include the class of integers.
class
 
Definitiondf-z 9344 Define the set of integers, which are the positive and negative integers together with zero. Definition of integers in [Apostol] p. 22. The letter Z abbreviates the German word Zahlen meaning "numbers." (Contributed by NM, 8-Jan-2002.)
ℤ = {𝑛 ∈ ℝ ∣ (𝑛 = 0 ∨ 𝑛 ∈ ℕ ∨ -𝑛 ∈ ℕ)}
 
Theoremelz 9345 Membership in the set of integers. (Contributed by NM, 8-Jan-2002.)
(𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)))
 
Theoremnnnegz 9346 The negative of a positive integer is an integer. (Contributed by NM, 12-Jan-2002.)
(𝑁 ∈ ℕ → -𝑁 ∈ ℤ)
 
Theoremzre 9347 An integer is a real. (Contributed by NM, 8-Jan-2002.)
(𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
 
Theoremzcn 9348 An integer is a complex number. (Contributed by NM, 9-May-2004.)
(𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
 
Theoremzrei 9349 An integer is a real number. (Contributed by NM, 14-Jul-2005.)
𝐴 ∈ ℤ       𝐴 ∈ ℝ
 
Theoremzssre 9350 The integers are a subset of the reals. (Contributed by NM, 2-Aug-2004.)
ℤ ⊆ ℝ
 
Theoremzsscn 9351 The integers are a subset of the complex numbers. (Contributed by NM, 2-Aug-2004.)
ℤ ⊆ ℂ
 
Theoremzex 9352 The set of integers exists. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 17-Nov-2014.)
ℤ ∈ V
 
Theoremelnnz 9353 Positive integer property expressed in terms of integers. (Contributed by NM, 8-Jan-2002.)
(𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁))
 
Theorem0z 9354 Zero is an integer. (Contributed by NM, 12-Jan-2002.)
0 ∈ ℤ
 
Theorem0zd 9355 Zero is an integer, deductive form (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
(𝜑 → 0 ∈ ℤ)
 
Theoremelnn0z 9356 Nonnegative integer property expressed in terms of integers. (Contributed by NM, 9-May-2004.)
(𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁))
 
Theoremelznn0nn 9357 Integer property expressed in terms nonnegative integers and positive integers. (Contributed by NM, 10-May-2004.)
(𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
 
Theoremelznn0 9358 Integer property expressed in terms of nonnegative integers. (Contributed by NM, 9-May-2004.)
(𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)))
 
Theoremelznn 9359 Integer property expressed in terms of positive integers and nonnegative integers. (Contributed by NM, 12-Jul-2005.)
(𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ0)))
 
Theoremnnssz 9360 Positive integers are a subset of integers. (Contributed by NM, 9-Jan-2002.)
ℕ ⊆ ℤ
 
Theoremnn0ssz 9361 Nonnegative integers are a subset of the integers. (Contributed by NM, 9-May-2004.)
0 ⊆ ℤ
 
Theoremnnz 9362 A positive integer is an integer. (Contributed by NM, 9-May-2004.)
(𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
 
Theoremnn0z 9363 A nonnegative integer is an integer. (Contributed by NM, 9-May-2004.)
(𝑁 ∈ ℕ0𝑁 ∈ ℤ)
 
Theoremnnzi 9364 A positive integer is an integer. (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑁 ∈ ℕ       𝑁 ∈ ℤ
 
Theoremnn0zi 9365 A nonnegative integer is an integer. (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑁 ∈ ℕ0       𝑁 ∈ ℤ
 
Theoremelnnz1 9366 Positive integer property expressed in terms of integers. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.)
(𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 1 ≤ 𝑁))
 
Theoremnnzrab 9367 Positive integers expressed as a subset of integers. (Contributed by NM, 3-Oct-2004.)
ℕ = {𝑥 ∈ ℤ ∣ 1 ≤ 𝑥}
 
Theoremnn0zrab 9368 Nonnegative integers expressed as a subset of integers. (Contributed by NM, 3-Oct-2004.)
0 = {𝑥 ∈ ℤ ∣ 0 ≤ 𝑥}
 
Theorem1z 9369 One is an integer. (Contributed by NM, 10-May-2004.)
1 ∈ ℤ
 
Theorem1zzd 9370 1 is an integer, deductive form (common case). (Contributed by David A. Wheeler, 6-Dec-2018.)
(𝜑 → 1 ∈ ℤ)
 
Theorem2z 9371 Two is an integer. (Contributed by NM, 10-May-2004.)
2 ∈ ℤ
 
Theorem3z 9372 3 is an integer. (Contributed by David A. Wheeler, 8-Dec-2018.)
3 ∈ ℤ
 
Theorem4z 9373 4 is an integer. (Contributed by BJ, 26-Mar-2020.)
4 ∈ ℤ
 
Theoremznegcl 9374 Closure law for negative integers. (Contributed by NM, 9-May-2004.)
(𝑁 ∈ ℤ → -𝑁 ∈ ℤ)
 
Theoremneg1z 9375 -1 is an integer (common case). (Contributed by David A. Wheeler, 5-Dec-2018.)
-1 ∈ ℤ
 
Theoremznegclb 9376 A number is an integer iff its negative is. (Contributed by Stefan O'Rear, 13-Sep-2014.)
(𝐴 ∈ ℂ → (𝐴 ∈ ℤ ↔ -𝐴 ∈ ℤ))
 
Theoremnn0negz 9377 The negative of a nonnegative integer is an integer. (Contributed by NM, 9-May-2004.)
(𝑁 ∈ ℕ0 → -𝑁 ∈ ℤ)
 
Theoremnn0negzi 9378 The negative of a nonnegative integer is an integer. (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑁 ∈ ℕ0       -𝑁 ∈ ℤ
 
Theorempeano2z 9379 Second Peano postulate generalized to integers. (Contributed by NM, 13-Feb-2005.)
(𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ)
 
Theoremzaddcllempos 9380 Lemma for zaddcl 9383. Special case in which 𝑁 is a positive integer. (Contributed by Jim Kingdon, 14-Mar-2020.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℤ)
 
Theorempeano2zm 9381 "Reverse" second Peano postulate for integers. (Contributed by NM, 12-Sep-2005.)
(𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
 
Theoremzaddcllemneg 9382 Lemma for zaddcl 9383. Special case in which -𝑁 is a positive integer. (Contributed by Jim Kingdon, 14-Mar-2020.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℤ)
 
Theoremzaddcl 9383 Closure of addition of integers. (Contributed by NM, 9-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ)
 
Theoremzsubcl 9384 Closure of subtraction of integers. (Contributed by NM, 11-May-2004.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁) ∈ ℤ)
 
Theoremztri3or0 9385 Integer trichotomy (with zero). (Contributed by Jim Kingdon, 14-Mar-2020.)
(𝑁 ∈ ℤ → (𝑁 < 0 ∨ 𝑁 = 0 ∨ 0 < 𝑁))
 
Theoremztri3or 9386 Integer trichotomy. (Contributed by Jim Kingdon, 14-Mar-2020.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀))
 
Theoremzletric 9387 Trichotomy law. (Contributed by Jim Kingdon, 27-Mar-2020.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵𝐵𝐴))
 
Theoremzlelttric 9388 Trichotomy law. (Contributed by Jim Kingdon, 17-Apr-2020.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵𝐵 < 𝐴))
 
Theoremzltnle 9389 'Less than' expressed in terms of 'less than or equal to'. (Contributed by Jim Kingdon, 14-Mar-2020.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴))
 
Theoremzleloe 9390 Integer 'Less than or equal to' expressed in terms of 'less than' or 'equals'. (Contributed by Jim Kingdon, 8-Apr-2020.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))
 
Theoremznnnlt1 9391 An integer is not a positive integer iff it is less than one. (Contributed by NM, 13-Jul-2005.)
(𝑁 ∈ ℤ → (¬ 𝑁 ∈ ℕ ↔ 𝑁 < 1))
 
Theoremzletr 9392 Transitive law of ordering for integers. (Contributed by Alexander van der Vekens, 3-Apr-2018.)
((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐽𝐾𝐾𝐿) → 𝐽𝐿))
 
Theoremzrevaddcl 9393 Reverse closure law for addition of integers. (Contributed by NM, 11-May-2004.)
(𝑁 ∈ ℤ → ((𝑀 ∈ ℂ ∧ (𝑀 + 𝑁) ∈ ℤ) ↔ 𝑀 ∈ ℤ))
 
Theoremznnsub 9394 The positive difference of unequal integers is a positive integer. (Generalization of nnsub 9046.) (Contributed by NM, 11-May-2004.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ))
 
Theoremnzadd 9395 The sum of a real number not being an integer and an integer is not an integer. Note that "not being an integer" in this case means "the negation of is an integer" rather than "is apart from any integer" (given excluded middle, those two would be equivalent). (Contributed by AV, 19-Jul-2021.)
((𝐴 ∈ (ℝ ∖ ℤ) ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ (ℝ ∖ ℤ))
 
Theoremzmulcl 9396 Closure of multiplication of integers. (Contributed by NM, 30-Jul-2004.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ)
 
Theoremzltp1le 9397 Integer ordering relation. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁))
 
Theoremzleltp1 9398 Integer ordering relation. (Contributed by NM, 10-May-2004.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁𝑀 < (𝑁 + 1)))
 
Theoremzlem1lt 9399 Integer ordering relation. (Contributed by NM, 13-Nov-2004.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑀 − 1) < 𝑁))
 
Theoremzltlem1 9400 Integer ordering relation. (Contributed by NM, 13-Nov-2004.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁𝑀 ≤ (𝑁 − 1)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15815
  Copyright terms: Public domain < Previous  Next >