Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > deceq1i | GIF version |
Description: Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.) |
Ref | Expression |
---|---|
deceq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
deceq1i | ⊢ ;𝐴𝐶 = ;𝐵𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | deceq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | deceq1 9361 | . 2 ⊢ (𝐴 = 𝐵 → ;𝐴𝐶 = ;𝐵𝐶) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ;𝐴𝐶 = ;𝐵𝐶 |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ;cdc 9357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-rex 2459 df-v 2737 df-un 3131 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-iota 5170 df-fv 5216 df-ov 5868 df-dec 9358 |
This theorem is referenced by: deceq12i 9365 decmul10add 9425 |
Copyright terms: Public domain | W3C validator |