| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isof1o | GIF version | ||
| Description: An isomorphism is a one-to-one onto function. (Contributed by NM, 27-Apr-2004.) |
| Ref | Expression |
|---|---|
| isof1o | ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-isom 5288 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wral 2485 class class class wbr 4050 –1-1-onto→wf1o 5278 ‘cfv 5279 Isom wiso 5280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-isom 5288 |
| This theorem is referenced by: isocnv2 5893 isores1 5895 isoini 5899 isoini2 5900 isoselem 5901 isose 5902 isopolem 5903 isosolem 5905 smoiso 6400 isotilem 7122 supisolem 7124 supisoex 7125 supisoti 7126 ordiso2 7151 leisorel 10999 zfz1isolemiso 11001 seq3coll 11004 summodclem2a 11762 prodmodclem2a 11957 |
| Copyright terms: Public domain | W3C validator |