| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isof1o | GIF version | ||
| Description: An isomorphism is a one-to-one onto function. (Contributed by NM, 27-Apr-2004.) |
| Ref | Expression |
|---|---|
| isof1o | ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-isom 5327 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wral 2508 class class class wbr 4083 –1-1-onto→wf1o 5317 ‘cfv 5318 Isom wiso 5319 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-isom 5327 |
| This theorem is referenced by: isocnv2 5942 isores1 5944 isoini 5948 isoini2 5949 isoselem 5950 isose 5951 isopolem 5952 isosolem 5954 smoiso 6454 isotilem 7181 supisolem 7183 supisoex 7184 supisoti 7185 ordiso2 7210 leisorel 11067 zfz1isolemiso 11069 seq3coll 11072 summodclem2a 11900 prodmodclem2a 12095 |
| Copyright terms: Public domain | W3C validator |