ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isof1o GIF version

Theorem isof1o 5810
Description: An isomorphism is a one-to-one onto function. (Contributed by NM, 27-Apr-2004.)
Assertion
Ref Expression
isof1o (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴1-1-onto𝐵)

Proof of Theorem isof1o
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-isom 5227 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
21simplbi 274 1 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴1-1-onto𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wral 2455   class class class wbr 4005  1-1-ontowf1o 5217  cfv 5218   Isom wiso 5219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-isom 5227
This theorem is referenced by:  isocnv2  5815  isores1  5817  isoini  5821  isoini2  5822  isoselem  5823  isose  5824  isopolem  5825  isosolem  5827  smoiso  6305  isotilem  7007  supisolem  7009  supisoex  7010  supisoti  7011  ordiso2  7036  leisorel  10819  zfz1isolemiso  10821  seq3coll  10824  summodclem2a  11391  prodmodclem2a  11586
  Copyright terms: Public domain W3C validator