| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isof1o | GIF version | ||
| Description: An isomorphism is a one-to-one onto function. (Contributed by NM, 27-Apr-2004.) |
| Ref | Expression |
|---|---|
| isof1o | ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-isom 5323 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wral 2508 class class class wbr 4082 –1-1-onto→wf1o 5313 ‘cfv 5314 Isom wiso 5315 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-isom 5323 |
| This theorem is referenced by: isocnv2 5929 isores1 5931 isoini 5935 isoini2 5936 isoselem 5937 isose 5938 isopolem 5939 isosolem 5941 smoiso 6438 isotilem 7161 supisolem 7163 supisoex 7164 supisoti 7165 ordiso2 7190 leisorel 11046 zfz1isolemiso 11048 seq3coll 11051 summodclem2a 11878 prodmodclem2a 12073 |
| Copyright terms: Public domain | W3C validator |