ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isof1o GIF version

Theorem isof1o 5937
Description: An isomorphism is a one-to-one onto function. (Contributed by NM, 27-Apr-2004.)
Assertion
Ref Expression
isof1o (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴1-1-onto𝐵)

Proof of Theorem isof1o
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-isom 5327 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
21simplbi 274 1 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴1-1-onto𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wral 2508   class class class wbr 4083  1-1-ontowf1o 5317  cfv 5318   Isom wiso 5319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-isom 5327
This theorem is referenced by:  isocnv2  5942  isores1  5944  isoini  5948  isoini2  5949  isoselem  5950  isose  5951  isopolem  5952  isosolem  5954  smoiso  6454  isotilem  7181  supisolem  7183  supisoex  7184  supisoti  7185  ordiso2  7210  leisorel  11067  zfz1isolemiso  11069  seq3coll  11072  summodclem2a  11900  prodmodclem2a  12095
  Copyright terms: Public domain W3C validator