ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isof1o GIF version

Theorem isof1o 5924
Description: An isomorphism is a one-to-one onto function. (Contributed by NM, 27-Apr-2004.)
Assertion
Ref Expression
isof1o (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴1-1-onto𝐵)

Proof of Theorem isof1o
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-isom 5323 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
21simplbi 274 1 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴1-1-onto𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wral 2508   class class class wbr 4082  1-1-ontowf1o 5313  cfv 5314   Isom wiso 5315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-isom 5323
This theorem is referenced by:  isocnv2  5929  isores1  5931  isoini  5935  isoini2  5936  isoselem  5937  isose  5938  isopolem  5939  isosolem  5941  smoiso  6438  isotilem  7161  supisolem  7163  supisoex  7164  supisoti  7165  ordiso2  7190  leisorel  11046  zfz1isolemiso  11048  seq3coll  11051  summodclem2a  11878  prodmodclem2a  12073
  Copyright terms: Public domain W3C validator