Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isof1o | GIF version |
Description: An isomorphism is a one-to-one onto function. (Contributed by NM, 27-Apr-2004.) |
Ref | Expression |
---|---|
isof1o | ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-isom 5197 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
2 | 1 | simplbi 272 | 1 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wral 2444 class class class wbr 3982 –1-1-onto→wf1o 5187 ‘cfv 5188 Isom wiso 5189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 df-isom 5197 |
This theorem is referenced by: isocnv2 5780 isores1 5782 isoini 5786 isoini2 5787 isoselem 5788 isose 5789 isopolem 5790 isosolem 5792 smoiso 6270 isotilem 6971 supisolem 6973 supisoex 6974 supisoti 6975 ordiso2 7000 leisorel 10750 zfz1isolemiso 10752 seq3coll 10755 summodclem2a 11322 prodmodclem2a 11517 |
Copyright terms: Public domain | W3C validator |