| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isof1o | GIF version | ||
| Description: An isomorphism is a one-to-one onto function. (Contributed by NM, 27-Apr-2004.) |
| Ref | Expression |
|---|---|
| isof1o | ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-isom 5268 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wral 2475 class class class wbr 4034 –1-1-onto→wf1o 5258 ‘cfv 5259 Isom wiso 5260 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-isom 5268 |
| This theorem is referenced by: isocnv2 5862 isores1 5864 isoini 5868 isoini2 5869 isoselem 5870 isose 5871 isopolem 5872 isosolem 5874 smoiso 6369 isotilem 7081 supisolem 7083 supisoex 7084 supisoti 7085 ordiso2 7110 leisorel 10946 zfz1isolemiso 10948 seq3coll 10951 summodclem2a 11563 prodmodclem2a 11758 |
| Copyright terms: Public domain | W3C validator |