ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isof1o GIF version

Theorem isof1o 5888
Description: An isomorphism is a one-to-one onto function. (Contributed by NM, 27-Apr-2004.)
Assertion
Ref Expression
isof1o (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴1-1-onto𝐵)

Proof of Theorem isof1o
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-isom 5288 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
21simplbi 274 1 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴1-1-onto𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wral 2485   class class class wbr 4050  1-1-ontowf1o 5278  cfv 5279   Isom wiso 5280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-isom 5288
This theorem is referenced by:  isocnv2  5893  isores1  5895  isoini  5899  isoini2  5900  isoselem  5901  isose  5902  isopolem  5903  isosolem  5905  smoiso  6400  isotilem  7122  supisolem  7124  supisoex  7125  supisoti  7126  ordiso2  7151  leisorel  10999  zfz1isolemiso  11001  seq3coll  11004  summodclem2a  11762  prodmodclem2a  11957
  Copyright terms: Public domain W3C validator