![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > isof1o | GIF version |
Description: An isomorphism is a one-to-one onto function. (Contributed by NM, 27-Apr-2004.) |
Ref | Expression |
---|---|
isof1o | ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-isom 5263 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
2 | 1 | simplbi 274 | 1 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∀wral 2472 class class class wbr 4029 –1-1-onto→wf1o 5253 ‘cfv 5254 Isom wiso 5255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 df-isom 5263 |
This theorem is referenced by: isocnv2 5855 isores1 5857 isoini 5861 isoini2 5862 isoselem 5863 isose 5864 isopolem 5865 isosolem 5867 smoiso 6355 isotilem 7065 supisolem 7067 supisoex 7068 supisoti 7069 ordiso2 7094 leisorel 10908 zfz1isolemiso 10910 seq3coll 10913 summodclem2a 11524 prodmodclem2a 11719 |
Copyright terms: Public domain | W3C validator |