ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isores3 GIF version

Theorem isores3 5938
Description: Induced isomorphism on a subset. (Contributed by Stefan O'Rear, 5-Nov-2014.)
Assertion
Ref Expression
isores3 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐾𝐴𝑋 = (𝐻𝐾)) → (𝐻𝐾) Isom 𝑅, 𝑆 (𝐾, 𝑋))

Proof of Theorem isores3
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1of1 5570 . . . . . . 7 (𝐻:𝐴1-1-onto𝐵𝐻:𝐴1-1𝐵)
2 f1ores 5586 . . . . . . . 8 ((𝐻:𝐴1-1𝐵𝐾𝐴) → (𝐻𝐾):𝐾1-1-onto→(𝐻𝐾))
32expcom 116 . . . . . . 7 (𝐾𝐴 → (𝐻:𝐴1-1𝐵 → (𝐻𝐾):𝐾1-1-onto→(𝐻𝐾)))
41, 3syl5 32 . . . . . 6 (𝐾𝐴 → (𝐻:𝐴1-1-onto𝐵 → (𝐻𝐾):𝐾1-1-onto→(𝐻𝐾)))
5 ssralv 3288 . . . . . . 7 (𝐾𝐴 → (∀𝑎𝐴𝑏𝐴 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏)) → ∀𝑎𝐾𝑏𝐴 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏))))
6 ssralv 3288 . . . . . . . . . 10 (𝐾𝐴 → (∀𝑏𝐴 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏)) → ∀𝑏𝐾 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏))))
76adantr 276 . . . . . . . . 9 ((𝐾𝐴𝑎𝐾) → (∀𝑏𝐴 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏)) → ∀𝑏𝐾 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏))))
8 fvres 5650 . . . . . . . . . . . . . 14 (𝑎𝐾 → ((𝐻𝐾)‘𝑎) = (𝐻𝑎))
9 fvres 5650 . . . . . . . . . . . . . 14 (𝑏𝐾 → ((𝐻𝐾)‘𝑏) = (𝐻𝑏))
108, 9breqan12d 4098 . . . . . . . . . . . . 13 ((𝑎𝐾𝑏𝐾) → (((𝐻𝐾)‘𝑎)𝑆((𝐻𝐾)‘𝑏) ↔ (𝐻𝑎)𝑆(𝐻𝑏)))
1110adantll 476 . . . . . . . . . . . 12 (((𝐾𝐴𝑎𝐾) ∧ 𝑏𝐾) → (((𝐻𝐾)‘𝑎)𝑆((𝐻𝐾)‘𝑏) ↔ (𝐻𝑎)𝑆(𝐻𝑏)))
1211bibi2d 232 . . . . . . . . . . 11 (((𝐾𝐴𝑎𝐾) ∧ 𝑏𝐾) → ((𝑎𝑅𝑏 ↔ ((𝐻𝐾)‘𝑎)𝑆((𝐻𝐾)‘𝑏)) ↔ (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏))))
1312biimprd 158 . . . . . . . . . 10 (((𝐾𝐴𝑎𝐾) ∧ 𝑏𝐾) → ((𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏)) → (𝑎𝑅𝑏 ↔ ((𝐻𝐾)‘𝑎)𝑆((𝐻𝐾)‘𝑏))))
1413ralimdva 2597 . . . . . . . . 9 ((𝐾𝐴𝑎𝐾) → (∀𝑏𝐾 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏)) → ∀𝑏𝐾 (𝑎𝑅𝑏 ↔ ((𝐻𝐾)‘𝑎)𝑆((𝐻𝐾)‘𝑏))))
157, 14syld 45 . . . . . . . 8 ((𝐾𝐴𝑎𝐾) → (∀𝑏𝐴 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏)) → ∀𝑏𝐾 (𝑎𝑅𝑏 ↔ ((𝐻𝐾)‘𝑎)𝑆((𝐻𝐾)‘𝑏))))
1615ralimdva 2597 . . . . . . 7 (𝐾𝐴 → (∀𝑎𝐾𝑏𝐴 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏)) → ∀𝑎𝐾𝑏𝐾 (𝑎𝑅𝑏 ↔ ((𝐻𝐾)‘𝑎)𝑆((𝐻𝐾)‘𝑏))))
175, 16syld 45 . . . . . 6 (𝐾𝐴 → (∀𝑎𝐴𝑏𝐴 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏)) → ∀𝑎𝐾𝑏𝐾 (𝑎𝑅𝑏 ↔ ((𝐻𝐾)‘𝑎)𝑆((𝐻𝐾)‘𝑏))))
184, 17anim12d 335 . . . . 5 (𝐾𝐴 → ((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑎𝐴𝑏𝐴 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏))) → ((𝐻𝐾):𝐾1-1-onto→(𝐻𝐾) ∧ ∀𝑎𝐾𝑏𝐾 (𝑎𝑅𝑏 ↔ ((𝐻𝐾)‘𝑎)𝑆((𝐻𝐾)‘𝑏)))))
19 df-isom 5326 . . . . 5 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑎𝐴𝑏𝐴 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏))))
20 df-isom 5326 . . . . 5 ((𝐻𝐾) Isom 𝑅, 𝑆 (𝐾, (𝐻𝐾)) ↔ ((𝐻𝐾):𝐾1-1-onto→(𝐻𝐾) ∧ ∀𝑎𝐾𝑏𝐾 (𝑎𝑅𝑏 ↔ ((𝐻𝐾)‘𝑎)𝑆((𝐻𝐾)‘𝑏))))
2118, 19, 203imtr4g 205 . . . 4 (𝐾𝐴 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝐻𝐾) Isom 𝑅, 𝑆 (𝐾, (𝐻𝐾))))
2221impcom 125 . . 3 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐾𝐴) → (𝐻𝐾) Isom 𝑅, 𝑆 (𝐾, (𝐻𝐾)))
23 isoeq5 5928 . . 3 (𝑋 = (𝐻𝐾) → ((𝐻𝐾) Isom 𝑅, 𝑆 (𝐾, 𝑋) ↔ (𝐻𝐾) Isom 𝑅, 𝑆 (𝐾, (𝐻𝐾))))
2422, 23syl5ibrcom 157 . 2 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐾𝐴) → (𝑋 = (𝐻𝐾) → (𝐻𝐾) Isom 𝑅, 𝑆 (𝐾, 𝑋)))
25243impia 1224 1 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐾𝐴𝑋 = (𝐻𝐾)) → (𝐻𝐾) Isom 𝑅, 𝑆 (𝐾, 𝑋))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200  wral 2508  wss 3197   class class class wbr 4082  cres 4720  cima 4721  1-1wf1 5314  1-1-ontowf1o 5316  cfv 5317   Isom wiso 5318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-isom 5326
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator