Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfiso | GIF version |
Description: Bound-variable hypothesis builder for an isomorphism. (Contributed by NM, 17-May-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
nfiso.1 | ⊢ Ⅎ𝑥𝐻 |
nfiso.2 | ⊢ Ⅎ𝑥𝑅 |
nfiso.3 | ⊢ Ⅎ𝑥𝑆 |
nfiso.4 | ⊢ Ⅎ𝑥𝐴 |
nfiso.5 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfiso | ⊢ Ⅎ𝑥 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-isom 5197 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑦𝑅𝑧 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑧)))) | |
2 | nfiso.1 | . . . 4 ⊢ Ⅎ𝑥𝐻 | |
3 | nfiso.4 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
4 | nfiso.5 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
5 | 2, 3, 4 | nff1o 5430 | . . 3 ⊢ Ⅎ𝑥 𝐻:𝐴–1-1-onto→𝐵 |
6 | nfcv 2308 | . . . . . . 7 ⊢ Ⅎ𝑥𝑦 | |
7 | nfiso.2 | . . . . . . 7 ⊢ Ⅎ𝑥𝑅 | |
8 | nfcv 2308 | . . . . . . 7 ⊢ Ⅎ𝑥𝑧 | |
9 | 6, 7, 8 | nfbr 4028 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦𝑅𝑧 |
10 | 2, 6 | nffv 5496 | . . . . . . 7 ⊢ Ⅎ𝑥(𝐻‘𝑦) |
11 | nfiso.3 | . . . . . . 7 ⊢ Ⅎ𝑥𝑆 | |
12 | 2, 8 | nffv 5496 | . . . . . . 7 ⊢ Ⅎ𝑥(𝐻‘𝑧) |
13 | 10, 11, 12 | nfbr 4028 | . . . . . 6 ⊢ Ⅎ𝑥(𝐻‘𝑦)𝑆(𝐻‘𝑧) |
14 | 9, 13 | nfbi 1577 | . . . . 5 ⊢ Ⅎ𝑥(𝑦𝑅𝑧 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑧)) |
15 | 3, 14 | nfralxy 2504 | . . . 4 ⊢ Ⅎ𝑥∀𝑧 ∈ 𝐴 (𝑦𝑅𝑧 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑧)) |
16 | 3, 15 | nfralxy 2504 | . . 3 ⊢ Ⅎ𝑥∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑦𝑅𝑧 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑧)) |
17 | 5, 16 | nfan 1553 | . 2 ⊢ Ⅎ𝑥(𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑦𝑅𝑧 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑧))) |
18 | 1, 17 | nfxfr 1462 | 1 ⊢ Ⅎ𝑥 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 Ⅎwnf 1448 Ⅎwnfc 2295 ∀wral 2444 class class class wbr 3982 –1-1-onto→wf1o 5187 ‘cfv 5188 Isom wiso 5189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-isom 5197 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |