| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfiso | GIF version | ||
| Description: Bound-variable hypothesis builder for an isomorphism. (Contributed by NM, 17-May-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| nfiso.1 | ⊢ Ⅎ𝑥𝐻 |
| nfiso.2 | ⊢ Ⅎ𝑥𝑅 |
| nfiso.3 | ⊢ Ⅎ𝑥𝑆 |
| nfiso.4 | ⊢ Ⅎ𝑥𝐴 |
| nfiso.5 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfiso | ⊢ Ⅎ𝑥 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-isom 5327 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑦𝑅𝑧 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑧)))) | |
| 2 | nfiso.1 | . . . 4 ⊢ Ⅎ𝑥𝐻 | |
| 3 | nfiso.4 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 4 | nfiso.5 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 5 | 2, 3, 4 | nff1o 5572 | . . 3 ⊢ Ⅎ𝑥 𝐻:𝐴–1-1-onto→𝐵 |
| 6 | nfcv 2372 | . . . . . . 7 ⊢ Ⅎ𝑥𝑦 | |
| 7 | nfiso.2 | . . . . . . 7 ⊢ Ⅎ𝑥𝑅 | |
| 8 | nfcv 2372 | . . . . . . 7 ⊢ Ⅎ𝑥𝑧 | |
| 9 | 6, 7, 8 | nfbr 4130 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦𝑅𝑧 |
| 10 | 2, 6 | nffv 5639 | . . . . . . 7 ⊢ Ⅎ𝑥(𝐻‘𝑦) |
| 11 | nfiso.3 | . . . . . . 7 ⊢ Ⅎ𝑥𝑆 | |
| 12 | 2, 8 | nffv 5639 | . . . . . . 7 ⊢ Ⅎ𝑥(𝐻‘𝑧) |
| 13 | 10, 11, 12 | nfbr 4130 | . . . . . 6 ⊢ Ⅎ𝑥(𝐻‘𝑦)𝑆(𝐻‘𝑧) |
| 14 | 9, 13 | nfbi 1635 | . . . . 5 ⊢ Ⅎ𝑥(𝑦𝑅𝑧 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑧)) |
| 15 | 3, 14 | nfralxy 2568 | . . . 4 ⊢ Ⅎ𝑥∀𝑧 ∈ 𝐴 (𝑦𝑅𝑧 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑧)) |
| 16 | 3, 15 | nfralxy 2568 | . . 3 ⊢ Ⅎ𝑥∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑦𝑅𝑧 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑧)) |
| 17 | 5, 16 | nfan 1611 | . 2 ⊢ Ⅎ𝑥(𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑦𝑅𝑧 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑧))) |
| 18 | 1, 17 | nfxfr 1520 | 1 ⊢ Ⅎ𝑥 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 Ⅎwnf 1506 Ⅎwnfc 2359 ∀wral 2508 class class class wbr 4083 –1-1-onto→wf1o 5317 ‘cfv 5318 Isom wiso 5319 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-isom 5327 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |