![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfiso | GIF version |
Description: Bound-variable hypothesis builder for an isomorphism. (Contributed by NM, 17-May-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
nfiso.1 | ⊢ Ⅎ𝑥𝐻 |
nfiso.2 | ⊢ Ⅎ𝑥𝑅 |
nfiso.3 | ⊢ Ⅎ𝑥𝑆 |
nfiso.4 | ⊢ Ⅎ𝑥𝐴 |
nfiso.5 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfiso | ⊢ Ⅎ𝑥 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-isom 5264 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑦𝑅𝑧 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑧)))) | |
2 | nfiso.1 | . . . 4 ⊢ Ⅎ𝑥𝐻 | |
3 | nfiso.4 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
4 | nfiso.5 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
5 | 2, 3, 4 | nff1o 5499 | . . 3 ⊢ Ⅎ𝑥 𝐻:𝐴–1-1-onto→𝐵 |
6 | nfcv 2336 | . . . . . . 7 ⊢ Ⅎ𝑥𝑦 | |
7 | nfiso.2 | . . . . . . 7 ⊢ Ⅎ𝑥𝑅 | |
8 | nfcv 2336 | . . . . . . 7 ⊢ Ⅎ𝑥𝑧 | |
9 | 6, 7, 8 | nfbr 4076 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦𝑅𝑧 |
10 | 2, 6 | nffv 5565 | . . . . . . 7 ⊢ Ⅎ𝑥(𝐻‘𝑦) |
11 | nfiso.3 | . . . . . . 7 ⊢ Ⅎ𝑥𝑆 | |
12 | 2, 8 | nffv 5565 | . . . . . . 7 ⊢ Ⅎ𝑥(𝐻‘𝑧) |
13 | 10, 11, 12 | nfbr 4076 | . . . . . 6 ⊢ Ⅎ𝑥(𝐻‘𝑦)𝑆(𝐻‘𝑧) |
14 | 9, 13 | nfbi 1600 | . . . . 5 ⊢ Ⅎ𝑥(𝑦𝑅𝑧 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑧)) |
15 | 3, 14 | nfralxy 2532 | . . . 4 ⊢ Ⅎ𝑥∀𝑧 ∈ 𝐴 (𝑦𝑅𝑧 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑧)) |
16 | 3, 15 | nfralxy 2532 | . . 3 ⊢ Ⅎ𝑥∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑦𝑅𝑧 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑧)) |
17 | 5, 16 | nfan 1576 | . 2 ⊢ Ⅎ𝑥(𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑦𝑅𝑧 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑧))) |
18 | 1, 17 | nfxfr 1485 | 1 ⊢ Ⅎ𝑥 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 Ⅎwnf 1471 Ⅎwnfc 2323 ∀wral 2472 class class class wbr 4030 –1-1-onto→wf1o 5254 ‘cfv 5255 Isom wiso 5256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-isom 5264 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |