![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > isorel | GIF version |
Description: An isomorphism connects binary relations via its function values. (Contributed by NM, 27-Apr-2004.) |
Ref | Expression |
---|---|
isorel | ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝐶𝑅𝐷 ↔ (𝐻‘𝐶)𝑆(𝐻‘𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-isom 5090 | . . 3 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
2 | 1 | simprbi 271 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) |
3 | breq1 3898 | . . . 4 ⊢ (𝑥 = 𝐶 → (𝑥𝑅𝑦 ↔ 𝐶𝑅𝑦)) | |
4 | fveq2 5375 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝐻‘𝑥) = (𝐻‘𝐶)) | |
5 | 4 | breq1d 3905 | . . . 4 ⊢ (𝑥 = 𝐶 → ((𝐻‘𝑥)𝑆(𝐻‘𝑦) ↔ (𝐻‘𝐶)𝑆(𝐻‘𝑦))) |
6 | 3, 5 | bibi12d 234 | . . 3 ⊢ (𝑥 = 𝐶 → ((𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ↔ (𝐶𝑅𝑦 ↔ (𝐻‘𝐶)𝑆(𝐻‘𝑦)))) |
7 | breq2 3899 | . . . 4 ⊢ (𝑦 = 𝐷 → (𝐶𝑅𝑦 ↔ 𝐶𝑅𝐷)) | |
8 | fveq2 5375 | . . . . 5 ⊢ (𝑦 = 𝐷 → (𝐻‘𝑦) = (𝐻‘𝐷)) | |
9 | 8 | breq2d 3907 | . . . 4 ⊢ (𝑦 = 𝐷 → ((𝐻‘𝐶)𝑆(𝐻‘𝑦) ↔ (𝐻‘𝐶)𝑆(𝐻‘𝐷))) |
10 | 7, 9 | bibi12d 234 | . . 3 ⊢ (𝑦 = 𝐷 → ((𝐶𝑅𝑦 ↔ (𝐻‘𝐶)𝑆(𝐻‘𝑦)) ↔ (𝐶𝑅𝐷 ↔ (𝐻‘𝐶)𝑆(𝐻‘𝐷)))) |
11 | 6, 10 | rspc2v 2772 | . 2 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) → (𝐶𝑅𝐷 ↔ (𝐻‘𝐶)𝑆(𝐻‘𝐷)))) |
12 | 2, 11 | mpan9 277 | 1 ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝐶𝑅𝐷 ↔ (𝐻‘𝐶)𝑆(𝐻‘𝐷))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1314 ∈ wcel 1463 ∀wral 2390 class class class wbr 3895 –1-1-onto→wf1o 5080 ‘cfv 5081 Isom wiso 5082 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 |
This theorem depends on definitions: df-bi 116 df-3an 947 df-tru 1317 df-nf 1420 df-sb 1719 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ral 2395 df-rex 2396 df-v 2659 df-un 3041 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-br 3896 df-iota 5046 df-fv 5089 df-isom 5090 |
This theorem is referenced by: isoresbr 5664 isoini 5673 isopolem 5677 isosolem 5679 smoiso 6153 isotilem 6845 supisolem 6847 ordiso2 6872 leisorel 10473 zfz1isolemiso 10475 seq3coll 10478 |
Copyright terms: Public domain | W3C validator |