| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > frec2uzisod | GIF version | ||
| Description: 𝐺 (see frec2uz0d 10616) is an isomorphism from natural ordinals to upper integers. (Contributed by Jim Kingdon, 17-May-2020.) |
| Ref | Expression |
|---|---|
| frec2uz.1 | ⊢ (𝜑 → 𝐶 ∈ ℤ) |
| frec2uz.2 | ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) |
| Ref | Expression |
|---|---|
| frec2uzisod | ⊢ (𝜑 → 𝐺 Isom E , < (ω, (ℤ≥‘𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frec2uz.1 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℤ) | |
| 2 | frec2uz.2 | . . 3 ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) | |
| 3 | 1, 2 | frec2uzf1od 10623 | . 2 ⊢ (𝜑 → 𝐺:ω–1-1-onto→(ℤ≥‘𝐶)) |
| 4 | epel 4382 | . . . 4 ⊢ (𝑦 E 𝑧 ↔ 𝑦 ∈ 𝑧) | |
| 5 | 1 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → 𝐶 ∈ ℤ) |
| 6 | simprl 529 | . . . . 5 ⊢ ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → 𝑦 ∈ ω) | |
| 7 | simprr 531 | . . . . 5 ⊢ ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → 𝑧 ∈ ω) | |
| 8 | 5, 2, 6, 7 | frec2uzlt2d 10621 | . . . 4 ⊢ ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → (𝑦 ∈ 𝑧 ↔ (𝐺‘𝑦) < (𝐺‘𝑧))) |
| 9 | 4, 8 | bitrid 192 | . . 3 ⊢ ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → (𝑦 E 𝑧 ↔ (𝐺‘𝑦) < (𝐺‘𝑧))) |
| 10 | 9 | ralrimivva 2612 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ ω ∀𝑧 ∈ ω (𝑦 E 𝑧 ↔ (𝐺‘𝑦) < (𝐺‘𝑧))) |
| 11 | df-isom 5326 | . 2 ⊢ (𝐺 Isom E , < (ω, (ℤ≥‘𝐶)) ↔ (𝐺:ω–1-1-onto→(ℤ≥‘𝐶) ∧ ∀𝑦 ∈ ω ∀𝑧 ∈ ω (𝑦 E 𝑧 ↔ (𝐺‘𝑦) < (𝐺‘𝑧)))) | |
| 12 | 3, 10, 11 | sylanbrc 417 | 1 ⊢ (𝜑 → 𝐺 Isom E , < (ω, (ℤ≥‘𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ∀wral 2508 class class class wbr 4082 ↦ cmpt 4144 E cep 4377 ωcom 4681 –1-1-onto→wf1o 5316 ‘cfv 5317 Isom wiso 5318 (class class class)co 6000 freccfrec 6534 1c1 7996 + caddc 7998 < clt 8177 ℤcz 9442 ℤ≥cuz 9718 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-eprel 4379 df-id 4383 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-isom 5326 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-recs 6449 df-frec 6535 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-n0 9366 df-z 9443 df-uz 9719 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |