ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec2uzisod GIF version

Theorem frec2uzisod 9963
Description: 𝐺 (see frec2uz0d 9955) is an isomorphism from natural ordinals to upper integers. (Contributed by Jim Kingdon, 17-May-2020.)
Hypotheses
Ref Expression
frec2uz.1 (𝜑𝐶 ∈ ℤ)
frec2uz.2 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
Assertion
Ref Expression
frec2uzisod (𝜑𝐺 Isom E , < (ω, (ℤ𝐶)))
Distinct variable groups:   𝑥,𝐶   𝜑,𝑥
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem frec2uzisod
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frec2uz.1 . . 3 (𝜑𝐶 ∈ ℤ)
2 frec2uz.2 . . 3 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
31, 2frec2uzf1od 9962 . 2 (𝜑𝐺:ω–1-1-onto→(ℤ𝐶))
4 epel 4143 . . . 4 (𝑦 E 𝑧𝑦𝑧)
51adantr 271 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → 𝐶 ∈ ℤ)
6 simprl 499 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → 𝑦 ∈ ω)
7 simprr 500 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → 𝑧 ∈ ω)
85, 2, 6, 7frec2uzlt2d 9960 . . . 4 ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → (𝑦𝑧 ↔ (𝐺𝑦) < (𝐺𝑧)))
94, 8syl5bb 191 . . 3 ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → (𝑦 E 𝑧 ↔ (𝐺𝑦) < (𝐺𝑧)))
109ralrimivva 2467 . 2 (𝜑 → ∀𝑦 ∈ ω ∀𝑧 ∈ ω (𝑦 E 𝑧 ↔ (𝐺𝑦) < (𝐺𝑧)))
11 df-isom 5058 . 2 (𝐺 Isom E , < (ω, (ℤ𝐶)) ↔ (𝐺:ω–1-1-onto→(ℤ𝐶) ∧ ∀𝑦 ∈ ω ∀𝑧 ∈ ω (𝑦 E 𝑧 ↔ (𝐺𝑦) < (𝐺𝑧))))
123, 10, 11sylanbrc 409 1 (𝜑𝐺 Isom E , < (ω, (ℤ𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1296  wcel 1445  wral 2370   class class class wbr 3867  cmpt 3921   E cep 4138  ωcom 4433  1-1-ontowf1o 5048  cfv 5049   Isom wiso 5050  (class class class)co 5690  freccfrec 6193  1c1 7448   + caddc 7450   < clt 7619  cz 8848  cuz 9118
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-coll 3975  ax-sep 3978  ax-nul 3986  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-iinf 4431  ax-cnex 7533  ax-resscn 7534  ax-1cn 7535  ax-1re 7536  ax-icn 7537  ax-addcl 7538  ax-addrcl 7539  ax-mulcl 7540  ax-addcom 7542  ax-addass 7544  ax-distr 7546  ax-i2m1 7547  ax-0lt1 7548  ax-0id 7550  ax-rnegex 7551  ax-cnre 7553  ax-pre-ltirr 7554  ax-pre-ltwlin 7555  ax-pre-lttrn 7556  ax-pre-ltadd 7558
This theorem depends on definitions:  df-bi 116  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-nel 2358  df-ral 2375  df-rex 2376  df-reu 2377  df-rab 2379  df-v 2635  df-sbc 2855  df-csb 2948  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-nul 3303  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-iun 3754  df-br 3868  df-opab 3922  df-mpt 3923  df-tr 3959  df-eprel 4140  df-id 4144  df-iord 4217  df-on 4219  df-ilim 4220  df-suc 4222  df-iom 4434  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-f1 5054  df-fo 5055  df-f1o 5056  df-fv 5057  df-isom 5058  df-riota 5646  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-recs 6108  df-frec 6194  df-pnf 7621  df-mnf 7622  df-xr 7623  df-ltxr 7624  df-le 7625  df-sub 7752  df-neg 7753  df-inn 8521  df-n0 8772  df-z 8849  df-uz 9119
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator