ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negiso GIF version

Theorem negiso 9102
Description: Negation is an order anti-isomorphism of the real numbers, which is its own inverse. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypothesis
Ref Expression
negiso.1 𝐹 = (𝑥 ∈ ℝ ↦ -𝑥)
Assertion
Ref Expression
negiso (𝐹 Isom < , < (ℝ, ℝ) ∧ 𝐹 = 𝐹)

Proof of Theorem negiso
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 negiso.1 . . . . . 6 𝐹 = (𝑥 ∈ ℝ ↦ -𝑥)
2 simpr 110 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
32renegcld 8526 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ) → -𝑥 ∈ ℝ)
4 simpr 110 . . . . . . 7 ((⊤ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
54renegcld 8526 . . . . . 6 ((⊤ ∧ 𝑦 ∈ ℝ) → -𝑦 ∈ ℝ)
6 recn 8132 . . . . . . . 8 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
7 recn 8132 . . . . . . . 8 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
8 negcon2 8399 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 = -𝑦𝑦 = -𝑥))
96, 7, 8syl2an 289 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 = -𝑦𝑦 = -𝑥))
109adantl 277 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 = -𝑦𝑦 = -𝑥))
111, 3, 5, 10f1ocnv2d 6210 . . . . 5 (⊤ → (𝐹:ℝ–1-1-onto→ℝ ∧ 𝐹 = (𝑦 ∈ ℝ ↦ -𝑦)))
1211mptru 1404 . . . 4 (𝐹:ℝ–1-1-onto→ℝ ∧ 𝐹 = (𝑦 ∈ ℝ ↦ -𝑦))
1312simpli 111 . . 3 𝐹:ℝ–1-1-onto→ℝ
14 simpl 109 . . . . . . . 8 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑧 ∈ ℝ)
1514recnd 8175 . . . . . . 7 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑧 ∈ ℂ)
1615negcld 8444 . . . . . 6 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → -𝑧 ∈ ℂ)
177adantl 277 . . . . . . 7 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
1817negcld 8444 . . . . . 6 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → -𝑦 ∈ ℂ)
19 brcnvg 4903 . . . . . 6 ((-𝑧 ∈ ℂ ∧ -𝑦 ∈ ℂ) → (-𝑧 < -𝑦 ↔ -𝑦 < -𝑧))
2016, 18, 19syl2anc 411 . . . . 5 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (-𝑧 < -𝑦 ↔ -𝑦 < -𝑧))
211a1i 9 . . . . . . 7 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝐹 = (𝑥 ∈ ℝ ↦ -𝑥))
22 negeq 8339 . . . . . . . 8 (𝑥 = 𝑧 → -𝑥 = -𝑧)
2322adantl 277 . . . . . . 7 (((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑥 = 𝑧) → -𝑥 = -𝑧)
2421, 23, 14, 16fvmptd 5715 . . . . . 6 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐹𝑧) = -𝑧)
25 negeq 8339 . . . . . . . 8 (𝑥 = 𝑦 → -𝑥 = -𝑦)
2625adantl 277 . . . . . . 7 (((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑥 = 𝑦) → -𝑥 = -𝑦)
27 simpr 110 . . . . . . 7 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
2821, 26, 27, 18fvmptd 5715 . . . . . 6 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) = -𝑦)
2924, 28breq12d 4096 . . . . 5 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝐹𝑧) < (𝐹𝑦) ↔ -𝑧 < -𝑦))
30 ltneg 8609 . . . . 5 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 < 𝑦 ↔ -𝑦 < -𝑧))
3120, 29, 303bitr4rd 221 . . . 4 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 < 𝑦 ↔ (𝐹𝑧) < (𝐹𝑦)))
3231rgen2a 2584 . . 3 𝑧 ∈ ℝ ∀𝑦 ∈ ℝ (𝑧 < 𝑦 ↔ (𝐹𝑧) < (𝐹𝑦))
33 df-isom 5327 . . 3 (𝐹 Isom < , < (ℝ, ℝ) ↔ (𝐹:ℝ–1-1-onto→ℝ ∧ ∀𝑧 ∈ ℝ ∀𝑦 ∈ ℝ (𝑧 < 𝑦 ↔ (𝐹𝑧) < (𝐹𝑦))))
3413, 32, 33mpbir2an 948 . 2 𝐹 Isom < , < (ℝ, ℝ)
35 negeq 8339 . . . 4 (𝑦 = 𝑥 → -𝑦 = -𝑥)
3635cbvmptv 4180 . . 3 (𝑦 ∈ ℝ ↦ -𝑦) = (𝑥 ∈ ℝ ↦ -𝑥)
3712simpri 113 . . 3 𝐹 = (𝑦 ∈ ℝ ↦ -𝑦)
3836, 37, 13eqtr4i 2260 . 2 𝐹 = 𝐹
3934, 38pm3.2i 272 1 (𝐹 Isom < , < (ℝ, ℝ) ∧ 𝐹 = 𝐹)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1395  wtru 1396  wcel 2200  wral 2508   class class class wbr 4083  cmpt 4145  ccnv 4718  1-1-ontowf1o 5317  cfv 5318   Isom wiso 5319  cc 7997  cr 7998   < clt 8181  -cneg 8318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-ltxr 8186  df-sub 8319  df-neg 8320
This theorem is referenced by:  infrenegsupex  9789
  Copyright terms: Public domain W3C validator