ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negiso GIF version

Theorem negiso 8414
Description: Negation is an order anti-isomorphism of the real numbers, which is its own inverse. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypothesis
Ref Expression
negiso.1 𝐹 = (𝑥 ∈ ℝ ↦ -𝑥)
Assertion
Ref Expression
negiso (𝐹 Isom < , < (ℝ, ℝ) ∧ 𝐹 = 𝐹)

Proof of Theorem negiso
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 negiso.1 . . . . . 6 𝐹 = (𝑥 ∈ ℝ ↦ -𝑥)
2 simpr 108 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
32renegcld 7856 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ) → -𝑥 ∈ ℝ)
4 simpr 108 . . . . . . 7 ((⊤ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
54renegcld 7856 . . . . . 6 ((⊤ ∧ 𝑦 ∈ ℝ) → -𝑦 ∈ ℝ)
6 recn 7473 . . . . . . . 8 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
7 recn 7473 . . . . . . . 8 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
8 negcon2 7733 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 = -𝑦𝑦 = -𝑥))
96, 7, 8syl2an 283 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 = -𝑦𝑦 = -𝑥))
109adantl 271 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 = -𝑦𝑦 = -𝑥))
111, 3, 5, 10f1ocnv2d 5848 . . . . 5 (⊤ → (𝐹:ℝ–1-1-onto→ℝ ∧ 𝐹 = (𝑦 ∈ ℝ ↦ -𝑦)))
1211mptru 1298 . . . 4 (𝐹:ℝ–1-1-onto→ℝ ∧ 𝐹 = (𝑦 ∈ ℝ ↦ -𝑦))
1312simpli 109 . . 3 𝐹:ℝ–1-1-onto→ℝ
14 simpl 107 . . . . . . . 8 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑧 ∈ ℝ)
1514recnd 7514 . . . . . . 7 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑧 ∈ ℂ)
1615negcld 7778 . . . . . 6 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → -𝑧 ∈ ℂ)
177adantl 271 . . . . . . 7 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
1817negcld 7778 . . . . . 6 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → -𝑦 ∈ ℂ)
19 brcnvg 4617 . . . . . 6 ((-𝑧 ∈ ℂ ∧ -𝑦 ∈ ℂ) → (-𝑧 < -𝑦 ↔ -𝑦 < -𝑧))
2016, 18, 19syl2anc 403 . . . . 5 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (-𝑧 < -𝑦 ↔ -𝑦 < -𝑧))
211a1i 9 . . . . . . 7 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝐹 = (𝑥 ∈ ℝ ↦ -𝑥))
22 negeq 7673 . . . . . . . 8 (𝑥 = 𝑧 → -𝑥 = -𝑧)
2322adantl 271 . . . . . . 7 (((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑥 = 𝑧) → -𝑥 = -𝑧)
2421, 23, 14, 16fvmptd 5385 . . . . . 6 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐹𝑧) = -𝑧)
25 negeq 7673 . . . . . . . 8 (𝑥 = 𝑦 → -𝑥 = -𝑦)
2625adantl 271 . . . . . . 7 (((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑥 = 𝑦) → -𝑥 = -𝑦)
27 simpr 108 . . . . . . 7 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
2821, 26, 27, 18fvmptd 5385 . . . . . 6 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) = -𝑦)
2924, 28breq12d 3858 . . . . 5 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝐹𝑧) < (𝐹𝑦) ↔ -𝑧 < -𝑦))
30 ltneg 7938 . . . . 5 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 < 𝑦 ↔ -𝑦 < -𝑧))
3120, 29, 303bitr4rd 219 . . . 4 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 < 𝑦 ↔ (𝐹𝑧) < (𝐹𝑦)))
3231rgen2a 2429 . . 3 𝑧 ∈ ℝ ∀𝑦 ∈ ℝ (𝑧 < 𝑦 ↔ (𝐹𝑧) < (𝐹𝑦))
33 df-isom 5024 . . 3 (𝐹 Isom < , < (ℝ, ℝ) ↔ (𝐹:ℝ–1-1-onto→ℝ ∧ ∀𝑧 ∈ ℝ ∀𝑦 ∈ ℝ (𝑧 < 𝑦 ↔ (𝐹𝑧) < (𝐹𝑦))))
3413, 32, 33mpbir2an 888 . 2 𝐹 Isom < , < (ℝ, ℝ)
35 negeq 7673 . . . 4 (𝑦 = 𝑥 → -𝑦 = -𝑥)
3635cbvmptv 3934 . . 3 (𝑦 ∈ ℝ ↦ -𝑦) = (𝑥 ∈ ℝ ↦ -𝑥)
3712simpri 111 . . 3 𝐹 = (𝑦 ∈ ℝ ↦ -𝑦)
3836, 37, 13eqtr4i 2118 . 2 𝐹 = 𝐹
3934, 38pm3.2i 266 1 (𝐹 Isom < , < (ℝ, ℝ) ∧ 𝐹 = 𝐹)
Colors of variables: wff set class
Syntax hints:  wa 102  wb 103   = wceq 1289  wtru 1290  wcel 1438  wral 2359   class class class wbr 3845  cmpt 3899  ccnv 4437  1-1-ontowf1o 5014  cfv 5015   Isom wiso 5016  cc 7346  cr 7347   < clt 7520  -cneg 7652
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-cnex 7434  ax-resscn 7435  ax-1cn 7436  ax-1re 7437  ax-icn 7438  ax-addcl 7439  ax-addrcl 7440  ax-mulcl 7441  ax-addcom 7443  ax-addass 7445  ax-distr 7447  ax-i2m1 7448  ax-0id 7451  ax-rnegex 7452  ax-cnre 7454  ax-pre-ltadd 7459
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-br 3846  df-opab 3900  df-mpt 3901  df-id 4120  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023  df-isom 5024  df-riota 5608  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-pnf 7522  df-mnf 7523  df-ltxr 7525  df-sub 7653  df-neg 7654
This theorem is referenced by:  infrenegsupex  9080
  Copyright terms: Public domain W3C validator