Step | Hyp | Ref
| Expression |
1 | | negiso.1 |
. . . . . 6
⊢ 𝐹 = (𝑥 ∈ ℝ ↦ -𝑥) |
2 | | simpr 109 |
. . . . . . 7
⊢
((⊤ ∧ 𝑥
∈ ℝ) → 𝑥
∈ ℝ) |
3 | 2 | renegcld 8299 |
. . . . . 6
⊢
((⊤ ∧ 𝑥
∈ ℝ) → -𝑥
∈ ℝ) |
4 | | simpr 109 |
. . . . . . 7
⊢
((⊤ ∧ 𝑦
∈ ℝ) → 𝑦
∈ ℝ) |
5 | 4 | renegcld 8299 |
. . . . . 6
⊢
((⊤ ∧ 𝑦
∈ ℝ) → -𝑦
∈ ℝ) |
6 | | recn 7907 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ → 𝑥 ∈
ℂ) |
7 | | recn 7907 |
. . . . . . . 8
⊢ (𝑦 ∈ ℝ → 𝑦 ∈
ℂ) |
8 | | negcon2 8172 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 = -𝑦 ↔ 𝑦 = -𝑥)) |
9 | 6, 7, 8 | syl2an 287 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 = -𝑦 ↔ 𝑦 = -𝑥)) |
10 | 9 | adantl 275 |
. . . . . 6
⊢
((⊤ ∧ (𝑥
∈ ℝ ∧ 𝑦
∈ ℝ)) → (𝑥
= -𝑦 ↔ 𝑦 = -𝑥)) |
11 | 1, 3, 5, 10 | f1ocnv2d 6053 |
. . . . 5
⊢ (⊤
→ (𝐹:ℝ–1-1-onto→ℝ ∧ ◡𝐹 = (𝑦 ∈ ℝ ↦ -𝑦))) |
12 | 11 | mptru 1357 |
. . . 4
⊢ (𝐹:ℝ–1-1-onto→ℝ ∧ ◡𝐹 = (𝑦 ∈ ℝ ↦ -𝑦)) |
13 | 12 | simpli 110 |
. . 3
⊢ 𝐹:ℝ–1-1-onto→ℝ |
14 | | simpl 108 |
. . . . . . . 8
⊢ ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑧 ∈
ℝ) |
15 | 14 | recnd 7948 |
. . . . . . 7
⊢ ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑧 ∈
ℂ) |
16 | 15 | negcld 8217 |
. . . . . 6
⊢ ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → -𝑧 ∈
ℂ) |
17 | 7 | adantl 275 |
. . . . . . 7
⊢ ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈
ℂ) |
18 | 17 | negcld 8217 |
. . . . . 6
⊢ ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → -𝑦 ∈
ℂ) |
19 | | brcnvg 4792 |
. . . . . 6
⊢ ((-𝑧 ∈ ℂ ∧ -𝑦 ∈ ℂ) → (-𝑧◡ < -𝑦 ↔ -𝑦 < -𝑧)) |
20 | 16, 18, 19 | syl2anc 409 |
. . . . 5
⊢ ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (-𝑧◡ < -𝑦 ↔ -𝑦 < -𝑧)) |
21 | 1 | a1i 9 |
. . . . . . 7
⊢ ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝐹 = (𝑥 ∈ ℝ ↦ -𝑥)) |
22 | | negeq 8112 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → -𝑥 = -𝑧) |
23 | 22 | adantl 275 |
. . . . . . 7
⊢ (((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑥 = 𝑧) → -𝑥 = -𝑧) |
24 | 21, 23, 14, 16 | fvmptd 5577 |
. . . . . 6
⊢ ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐹‘𝑧) = -𝑧) |
25 | | negeq 8112 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → -𝑥 = -𝑦) |
26 | 25 | adantl 275 |
. . . . . . 7
⊢ (((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑥 = 𝑦) → -𝑥 = -𝑦) |
27 | | simpr 109 |
. . . . . . 7
⊢ ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈
ℝ) |
28 | 21, 26, 27, 18 | fvmptd 5577 |
. . . . . 6
⊢ ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐹‘𝑦) = -𝑦) |
29 | 24, 28 | breq12d 4002 |
. . . . 5
⊢ ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝐹‘𝑧)◡
< (𝐹‘𝑦) ↔ -𝑧◡
< -𝑦)) |
30 | | ltneg 8381 |
. . . . 5
⊢ ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 < 𝑦 ↔ -𝑦 < -𝑧)) |
31 | 20, 29, 30 | 3bitr4rd 220 |
. . . 4
⊢ ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 < 𝑦 ↔ (𝐹‘𝑧)◡
< (𝐹‘𝑦))) |
32 | 31 | rgen2a 2524 |
. . 3
⊢
∀𝑧 ∈
ℝ ∀𝑦 ∈
ℝ (𝑧 < 𝑦 ↔ (𝐹‘𝑧)◡
< (𝐹‘𝑦)) |
33 | | df-isom 5207 |
. . 3
⊢ (𝐹 Isom < , ◡ < (ℝ, ℝ) ↔ (𝐹:ℝ–1-1-onto→ℝ ∧ ∀𝑧 ∈ ℝ ∀𝑦 ∈ ℝ (𝑧 < 𝑦 ↔ (𝐹‘𝑧)◡
< (𝐹‘𝑦)))) |
34 | 13, 32, 33 | mpbir2an 937 |
. 2
⊢ 𝐹 Isom < , ◡ < (ℝ, ℝ) |
35 | | negeq 8112 |
. . . 4
⊢ (𝑦 = 𝑥 → -𝑦 = -𝑥) |
36 | 35 | cbvmptv 4085 |
. . 3
⊢ (𝑦 ∈ ℝ ↦ -𝑦) = (𝑥 ∈ ℝ ↦ -𝑥) |
37 | 12 | simpri 112 |
. . 3
⊢ ◡𝐹 = (𝑦 ∈ ℝ ↦ -𝑦) |
38 | 36, 37, 1 | 3eqtr4i 2201 |
. 2
⊢ ◡𝐹 = 𝐹 |
39 | 34, 38 | pm3.2i 270 |
1
⊢ (𝐹 Isom < , ◡ < (ℝ, ℝ) ∧ ◡𝐹 = 𝐹) |