ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negiso GIF version

Theorem negiso 8999
Description: Negation is an order anti-isomorphism of the real numbers, which is its own inverse. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypothesis
Ref Expression
negiso.1 𝐹 = (𝑥 ∈ ℝ ↦ -𝑥)
Assertion
Ref Expression
negiso (𝐹 Isom < , < (ℝ, ℝ) ∧ 𝐹 = 𝐹)

Proof of Theorem negiso
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 negiso.1 . . . . . 6 𝐹 = (𝑥 ∈ ℝ ↦ -𝑥)
2 simpr 110 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
32renegcld 8423 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ) → -𝑥 ∈ ℝ)
4 simpr 110 . . . . . . 7 ((⊤ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
54renegcld 8423 . . . . . 6 ((⊤ ∧ 𝑦 ∈ ℝ) → -𝑦 ∈ ℝ)
6 recn 8029 . . . . . . . 8 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
7 recn 8029 . . . . . . . 8 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
8 negcon2 8296 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 = -𝑦𝑦 = -𝑥))
96, 7, 8syl2an 289 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 = -𝑦𝑦 = -𝑥))
109adantl 277 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 = -𝑦𝑦 = -𝑥))
111, 3, 5, 10f1ocnv2d 6131 . . . . 5 (⊤ → (𝐹:ℝ–1-1-onto→ℝ ∧ 𝐹 = (𝑦 ∈ ℝ ↦ -𝑦)))
1211mptru 1373 . . . 4 (𝐹:ℝ–1-1-onto→ℝ ∧ 𝐹 = (𝑦 ∈ ℝ ↦ -𝑦))
1312simpli 111 . . 3 𝐹:ℝ–1-1-onto→ℝ
14 simpl 109 . . . . . . . 8 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑧 ∈ ℝ)
1514recnd 8072 . . . . . . 7 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑧 ∈ ℂ)
1615negcld 8341 . . . . . 6 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → -𝑧 ∈ ℂ)
177adantl 277 . . . . . . 7 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
1817negcld 8341 . . . . . 6 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → -𝑦 ∈ ℂ)
19 brcnvg 4848 . . . . . 6 ((-𝑧 ∈ ℂ ∧ -𝑦 ∈ ℂ) → (-𝑧 < -𝑦 ↔ -𝑦 < -𝑧))
2016, 18, 19syl2anc 411 . . . . 5 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (-𝑧 < -𝑦 ↔ -𝑦 < -𝑧))
211a1i 9 . . . . . . 7 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝐹 = (𝑥 ∈ ℝ ↦ -𝑥))
22 negeq 8236 . . . . . . . 8 (𝑥 = 𝑧 → -𝑥 = -𝑧)
2322adantl 277 . . . . . . 7 (((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑥 = 𝑧) → -𝑥 = -𝑧)
2421, 23, 14, 16fvmptd 5645 . . . . . 6 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐹𝑧) = -𝑧)
25 negeq 8236 . . . . . . . 8 (𝑥 = 𝑦 → -𝑥 = -𝑦)
2625adantl 277 . . . . . . 7 (((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑥 = 𝑦) → -𝑥 = -𝑦)
27 simpr 110 . . . . . . 7 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
2821, 26, 27, 18fvmptd 5645 . . . . . 6 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) = -𝑦)
2924, 28breq12d 4047 . . . . 5 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝐹𝑧) < (𝐹𝑦) ↔ -𝑧 < -𝑦))
30 ltneg 8506 . . . . 5 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 < 𝑦 ↔ -𝑦 < -𝑧))
3120, 29, 303bitr4rd 221 . . . 4 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 < 𝑦 ↔ (𝐹𝑧) < (𝐹𝑦)))
3231rgen2a 2551 . . 3 𝑧 ∈ ℝ ∀𝑦 ∈ ℝ (𝑧 < 𝑦 ↔ (𝐹𝑧) < (𝐹𝑦))
33 df-isom 5268 . . 3 (𝐹 Isom < , < (ℝ, ℝ) ↔ (𝐹:ℝ–1-1-onto→ℝ ∧ ∀𝑧 ∈ ℝ ∀𝑦 ∈ ℝ (𝑧 < 𝑦 ↔ (𝐹𝑧) < (𝐹𝑦))))
3413, 32, 33mpbir2an 944 . 2 𝐹 Isom < , < (ℝ, ℝ)
35 negeq 8236 . . . 4 (𝑦 = 𝑥 → -𝑦 = -𝑥)
3635cbvmptv 4130 . . 3 (𝑦 ∈ ℝ ↦ -𝑦) = (𝑥 ∈ ℝ ↦ -𝑥)
3712simpri 113 . . 3 𝐹 = (𝑦 ∈ ℝ ↦ -𝑦)
3836, 37, 13eqtr4i 2227 . 2 𝐹 = 𝐹
3934, 38pm3.2i 272 1 (𝐹 Isom < , < (ℝ, ℝ) ∧ 𝐹 = 𝐹)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1364  wtru 1365  wcel 2167  wral 2475   class class class wbr 4034  cmpt 4095  ccnv 4663  1-1-ontowf1o 5258  cfv 5259   Isom wiso 5260  cc 7894  cr 7895   < clt 8078  -cneg 8215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-sub 8216  df-neg 8217
This theorem is referenced by:  infrenegsupex  9685
  Copyright terms: Public domain W3C validator