ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isoid GIF version

Theorem isoid 5717
Description: Identity law for isomorphism. Proposition 6.30(1) of [TakeutiZaring] p. 33. (Contributed by NM, 27-Apr-2004.)
Assertion
Ref Expression
isoid ( I ↾ 𝐴) Isom 𝑅, 𝑅 (𝐴, 𝐴)

Proof of Theorem isoid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oi 5411 . 2 ( I ↾ 𝐴):𝐴1-1-onto𝐴
2 fvresi 5619 . . . . 5 (𝑥𝐴 → (( I ↾ 𝐴)‘𝑥) = 𝑥)
3 fvresi 5619 . . . . 5 (𝑦𝐴 → (( I ↾ 𝐴)‘𝑦) = 𝑦)
42, 3breqan12d 3951 . . . 4 ((𝑥𝐴𝑦𝐴) → ((( I ↾ 𝐴)‘𝑥)𝑅(( I ↾ 𝐴)‘𝑦) ↔ 𝑥𝑅𝑦))
54bicomd 140 . . 3 ((𝑥𝐴𝑦𝐴) → (𝑥𝑅𝑦 ↔ (( I ↾ 𝐴)‘𝑥)𝑅(( I ↾ 𝐴)‘𝑦)))
65rgen2a 2489 . 2 𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (( I ↾ 𝐴)‘𝑥)𝑅(( I ↾ 𝐴)‘𝑦))
7 df-isom 5138 . 2 (( I ↾ 𝐴) Isom 𝑅, 𝑅 (𝐴, 𝐴) ↔ (( I ↾ 𝐴):𝐴1-1-onto𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (( I ↾ 𝐴)‘𝑥)𝑅(( I ↾ 𝐴)‘𝑦))))
81, 6, 7mpbir2an 927 1 ( I ↾ 𝐴) Isom 𝑅, 𝑅 (𝐴, 𝐴)
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  wcel 1481  wral 2417   class class class wbr 3935   I cid 4216  cres 4547  1-1-ontowf1o 5128  cfv 5129   Isom wiso 5130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4052  ax-pow 4104  ax-pr 4137
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-sbc 2913  df-un 3078  df-in 3080  df-ss 3087  df-pw 3515  df-sn 3536  df-pr 3537  df-op 3539  df-uni 3743  df-br 3936  df-opab 3996  df-id 4221  df-xp 4551  df-rel 4552  df-cnv 4553  df-co 4554  df-dm 4555  df-rn 4556  df-res 4557  df-ima 4558  df-iota 5094  df-fun 5131  df-fn 5132  df-f 5133  df-f1 5134  df-fo 5135  df-f1o 5136  df-fv 5137  df-isom 5138
This theorem is referenced by:  ordiso  6927
  Copyright terms: Public domain W3C validator