Step | Hyp | Ref
| Expression |
1 | | isof1o 5757 |
. . . . . 6
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) |
2 | | f1of1 5413 |
. . . . . 6
⊢ (𝐻:𝐴–1-1-onto→𝐵 → 𝐻:𝐴–1-1→𝐵) |
3 | 1, 2 | syl 14 |
. . . . 5
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1→𝐵) |
4 | 3 | adantr 274 |
. . . 4
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋 ∈ 𝐴) → 𝐻:𝐴–1-1→𝐵) |
5 | | isoini2.1 |
. . . . 5
⊢ 𝐶 = (𝐴 ∩ (◡𝑅 “ {𝑋})) |
6 | | inss1 3327 |
. . . . 5
⊢ (𝐴 ∩ (◡𝑅 “ {𝑋})) ⊆ 𝐴 |
7 | 5, 6 | eqsstri 3160 |
. . . 4
⊢ 𝐶 ⊆ 𝐴 |
8 | | f1ores 5429 |
. . . 4
⊢ ((𝐻:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐻 ↾ 𝐶):𝐶–1-1-onto→(𝐻 “ 𝐶)) |
9 | 4, 7, 8 | sylancl 410 |
. . 3
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋 ∈ 𝐴) → (𝐻 ↾ 𝐶):𝐶–1-1-onto→(𝐻 “ 𝐶)) |
10 | | isoini 5768 |
. . . . 5
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋 ∈ 𝐴) → (𝐻 “ (𝐴 ∩ (◡𝑅 “ {𝑋}))) = (𝐵 ∩ (◡𝑆 “ {(𝐻‘𝑋)}))) |
11 | 5 | imaeq2i 4926 |
. . . . 5
⊢ (𝐻 “ 𝐶) = (𝐻 “ (𝐴 ∩ (◡𝑅 “ {𝑋}))) |
12 | | isoini2.2 |
. . . . 5
⊢ 𝐷 = (𝐵 ∩ (◡𝑆 “ {(𝐻‘𝑋)})) |
13 | 10, 11, 12 | 3eqtr4g 2215 |
. . . 4
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋 ∈ 𝐴) → (𝐻 “ 𝐶) = 𝐷) |
14 | | f1oeq3 5405 |
. . . 4
⊢ ((𝐻 “ 𝐶) = 𝐷 → ((𝐻 ↾ 𝐶):𝐶–1-1-onto→(𝐻 “ 𝐶) ↔ (𝐻 ↾ 𝐶):𝐶–1-1-onto→𝐷)) |
15 | 13, 14 | syl 14 |
. . 3
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋 ∈ 𝐴) → ((𝐻 ↾ 𝐶):𝐶–1-1-onto→(𝐻 “ 𝐶) ↔ (𝐻 ↾ 𝐶):𝐶–1-1-onto→𝐷)) |
16 | 9, 15 | mpbid 146 |
. 2
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋 ∈ 𝐴) → (𝐻 ↾ 𝐶):𝐶–1-1-onto→𝐷) |
17 | | df-isom 5179 |
. . . . . . 7
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) |
18 | 17 | simprbi 273 |
. . . . . 6
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) |
19 | 18 | adantr 274 |
. . . . 5
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋 ∈ 𝐴) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) |
20 | | ssralv 3192 |
. . . . . 6
⊢ (𝐶 ⊆ 𝐴 → (∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) → ∀𝑦 ∈ 𝐶 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) |
21 | 20 | ralimdv 2525 |
. . . . 5
⊢ (𝐶 ⊆ 𝐴 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) |
22 | 7, 19, 21 | mpsyl 65 |
. . . 4
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋 ∈ 𝐴) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) |
23 | | ssralv 3192 |
. . . 4
⊢ (𝐶 ⊆ 𝐴 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) → ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) |
24 | 7, 22, 23 | mpsyl 65 |
. . 3
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋 ∈ 𝐴) → ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) |
25 | | fvres 5492 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐶 → ((𝐻 ↾ 𝐶)‘𝑥) = (𝐻‘𝑥)) |
26 | | fvres 5492 |
. . . . . . 7
⊢ (𝑦 ∈ 𝐶 → ((𝐻 ↾ 𝐶)‘𝑦) = (𝐻‘𝑦)) |
27 | 25, 26 | breqan12d 3981 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) → (((𝐻 ↾ 𝐶)‘𝑥)𝑆((𝐻 ↾ 𝐶)‘𝑦) ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) |
28 | 27 | bibi2d 231 |
. . . . 5
⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) → ((𝑥𝑅𝑦 ↔ ((𝐻 ↾ 𝐶)‘𝑥)𝑆((𝐻 ↾ 𝐶)‘𝑦)) ↔ (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) |
29 | 28 | ralbidva 2453 |
. . . 4
⊢ (𝑥 ∈ 𝐶 → (∀𝑦 ∈ 𝐶 (𝑥𝑅𝑦 ↔ ((𝐻 ↾ 𝐶)‘𝑥)𝑆((𝐻 ↾ 𝐶)‘𝑦)) ↔ ∀𝑦 ∈ 𝐶 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) |
30 | 29 | ralbiia 2471 |
. . 3
⊢
(∀𝑥 ∈
𝐶 ∀𝑦 ∈ 𝐶 (𝑥𝑅𝑦 ↔ ((𝐻 ↾ 𝐶)‘𝑥)𝑆((𝐻 ↾ 𝐶)‘𝑦)) ↔ ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) |
31 | 24, 30 | sylibr 133 |
. 2
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋 ∈ 𝐴) → ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 (𝑥𝑅𝑦 ↔ ((𝐻 ↾ 𝐶)‘𝑥)𝑆((𝐻 ↾ 𝐶)‘𝑦))) |
32 | | df-isom 5179 |
. 2
⊢ ((𝐻 ↾ 𝐶) Isom 𝑅, 𝑆 (𝐶, 𝐷) ↔ ((𝐻 ↾ 𝐶):𝐶–1-1-onto→𝐷 ∧ ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 (𝑥𝑅𝑦 ↔ ((𝐻 ↾ 𝐶)‘𝑥)𝑆((𝐻 ↾ 𝐶)‘𝑦)))) |
33 | 16, 31, 32 | sylanbrc 414 |
1
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋 ∈ 𝐴) → (𝐻 ↾ 𝐶) Isom 𝑅, 𝑆 (𝐶, 𝐷)) |