ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isoini2 GIF version

Theorem isoini2 5728
Description: Isomorphisms are isomorphisms on their initial segments. (Contributed by Mario Carneiro, 29-Mar-2014.)
Hypotheses
Ref Expression
isoini2.1 𝐶 = (𝐴 ∩ (𝑅 “ {𝑋}))
isoini2.2 𝐷 = (𝐵 ∩ (𝑆 “ {(𝐻𝑋)}))
Assertion
Ref Expression
isoini2 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋𝐴) → (𝐻𝐶) Isom 𝑅, 𝑆 (𝐶, 𝐷))

Proof of Theorem isoini2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isof1o 5716 . . . . . 6 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴1-1-onto𝐵)
2 f1of1 5374 . . . . . 6 (𝐻:𝐴1-1-onto𝐵𝐻:𝐴1-1𝐵)
31, 2syl 14 . . . . 5 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴1-1𝐵)
43adantr 274 . . . 4 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋𝐴) → 𝐻:𝐴1-1𝐵)
5 isoini2.1 . . . . 5 𝐶 = (𝐴 ∩ (𝑅 “ {𝑋}))
6 inss1 3301 . . . . 5 (𝐴 ∩ (𝑅 “ {𝑋})) ⊆ 𝐴
75, 6eqsstri 3134 . . . 4 𝐶𝐴
8 f1ores 5390 . . . 4 ((𝐻:𝐴1-1𝐵𝐶𝐴) → (𝐻𝐶):𝐶1-1-onto→(𝐻𝐶))
94, 7, 8sylancl 410 . . 3 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋𝐴) → (𝐻𝐶):𝐶1-1-onto→(𝐻𝐶))
10 isoini 5727 . . . . 5 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋𝐴) → (𝐻 “ (𝐴 ∩ (𝑅 “ {𝑋}))) = (𝐵 ∩ (𝑆 “ {(𝐻𝑋)})))
115imaeq2i 4887 . . . . 5 (𝐻𝐶) = (𝐻 “ (𝐴 ∩ (𝑅 “ {𝑋})))
12 isoini2.2 . . . . 5 𝐷 = (𝐵 ∩ (𝑆 “ {(𝐻𝑋)}))
1310, 11, 123eqtr4g 2198 . . . 4 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋𝐴) → (𝐻𝐶) = 𝐷)
14 f1oeq3 5366 . . . 4 ((𝐻𝐶) = 𝐷 → ((𝐻𝐶):𝐶1-1-onto→(𝐻𝐶) ↔ (𝐻𝐶):𝐶1-1-onto𝐷))
1513, 14syl 14 . . 3 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋𝐴) → ((𝐻𝐶):𝐶1-1-onto→(𝐻𝐶) ↔ (𝐻𝐶):𝐶1-1-onto𝐷))
169, 15mpbid 146 . 2 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋𝐴) → (𝐻𝐶):𝐶1-1-onto𝐷)
17 df-isom 5140 . . . . . . 7 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
1817simprbi 273 . . . . . 6 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)))
1918adantr 274 . . . . 5 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋𝐴) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)))
20 ssralv 3166 . . . . . 6 (𝐶𝐴 → (∀𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) → ∀𝑦𝐶 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
2120ralimdv 2503 . . . . 5 (𝐶𝐴 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) → ∀𝑥𝐴𝑦𝐶 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
227, 19, 21mpsyl 65 . . . 4 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋𝐴) → ∀𝑥𝐴𝑦𝐶 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)))
23 ssralv 3166 . . . 4 (𝐶𝐴 → (∀𝑥𝐴𝑦𝐶 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) → ∀𝑥𝐶𝑦𝐶 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
247, 22, 23mpsyl 65 . . 3 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋𝐴) → ∀𝑥𝐶𝑦𝐶 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)))
25 fvres 5453 . . . . . . 7 (𝑥𝐶 → ((𝐻𝐶)‘𝑥) = (𝐻𝑥))
26 fvres 5453 . . . . . . 7 (𝑦𝐶 → ((𝐻𝐶)‘𝑦) = (𝐻𝑦))
2725, 26breqan12d 3953 . . . . . 6 ((𝑥𝐶𝑦𝐶) → (((𝐻𝐶)‘𝑥)𝑆((𝐻𝐶)‘𝑦) ↔ (𝐻𝑥)𝑆(𝐻𝑦)))
2827bibi2d 231 . . . . 5 ((𝑥𝐶𝑦𝐶) → ((𝑥𝑅𝑦 ↔ ((𝐻𝐶)‘𝑥)𝑆((𝐻𝐶)‘𝑦)) ↔ (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
2928ralbidva 2434 . . . 4 (𝑥𝐶 → (∀𝑦𝐶 (𝑥𝑅𝑦 ↔ ((𝐻𝐶)‘𝑥)𝑆((𝐻𝐶)‘𝑦)) ↔ ∀𝑦𝐶 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
3029ralbiia 2452 . . 3 (∀𝑥𝐶𝑦𝐶 (𝑥𝑅𝑦 ↔ ((𝐻𝐶)‘𝑥)𝑆((𝐻𝐶)‘𝑦)) ↔ ∀𝑥𝐶𝑦𝐶 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)))
3124, 30sylibr 133 . 2 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋𝐴) → ∀𝑥𝐶𝑦𝐶 (𝑥𝑅𝑦 ↔ ((𝐻𝐶)‘𝑥)𝑆((𝐻𝐶)‘𝑦)))
32 df-isom 5140 . 2 ((𝐻𝐶) Isom 𝑅, 𝑆 (𝐶, 𝐷) ↔ ((𝐻𝐶):𝐶1-1-onto𝐷 ∧ ∀𝑥𝐶𝑦𝐶 (𝑥𝑅𝑦 ↔ ((𝐻𝐶)‘𝑥)𝑆((𝐻𝐶)‘𝑦))))
3316, 31, 32sylanbrc 414 1 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋𝐴) → (𝐻𝐶) Isom 𝑅, 𝑆 (𝐶, 𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1332  wcel 1481  wral 2417  cin 3075  wss 3076  {csn 3532   class class class wbr 3937  ccnv 4546  cres 4549  cima 4550  1-1wf1 5128  1-1-ontowf1o 5130  cfv 5131   Isom wiso 5132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-sbc 2914  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator