ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isores2 GIF version

Theorem isores2 5792
Description: An isomorphism from one well-order to another can be restricted on either well-order. (Contributed by Mario Carneiro, 15-Jan-2013.)
Assertion
Ref Expression
isores2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, (𝑆 ∩ (𝐵 × 𝐵))(𝐴, 𝐵))

Proof of Theorem isores2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1of 5442 . . . . . . . 8 (𝐻:𝐴1-1-onto𝐵𝐻:𝐴𝐵)
2 ffvelrn 5629 . . . . . . . . . 10 ((𝐻:𝐴𝐵𝑥𝐴) → (𝐻𝑥) ∈ 𝐵)
32adantrr 476 . . . . . . . . 9 ((𝐻:𝐴𝐵 ∧ (𝑥𝐴𝑦𝐴)) → (𝐻𝑥) ∈ 𝐵)
4 ffvelrn 5629 . . . . . . . . . 10 ((𝐻:𝐴𝐵𝑦𝐴) → (𝐻𝑦) ∈ 𝐵)
54adantrl 475 . . . . . . . . 9 ((𝐻:𝐴𝐵 ∧ (𝑥𝐴𝑦𝐴)) → (𝐻𝑦) ∈ 𝐵)
6 brinxp 4679 . . . . . . . . 9 (((𝐻𝑥) ∈ 𝐵 ∧ (𝐻𝑦) ∈ 𝐵) → ((𝐻𝑥)𝑆(𝐻𝑦) ↔ (𝐻𝑥)(𝑆 ∩ (𝐵 × 𝐵))(𝐻𝑦)))
73, 5, 6syl2anc 409 . . . . . . . 8 ((𝐻:𝐴𝐵 ∧ (𝑥𝐴𝑦𝐴)) → ((𝐻𝑥)𝑆(𝐻𝑦) ↔ (𝐻𝑥)(𝑆 ∩ (𝐵 × 𝐵))(𝐻𝑦)))
81, 7sylan 281 . . . . . . 7 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑥𝐴𝑦𝐴)) → ((𝐻𝑥)𝑆(𝐻𝑦) ↔ (𝐻𝑥)(𝑆 ∩ (𝐵 × 𝐵))(𝐻𝑦)))
98anassrs 398 . . . . . 6 (((𝐻:𝐴1-1-onto𝐵𝑥𝐴) ∧ 𝑦𝐴) → ((𝐻𝑥)𝑆(𝐻𝑦) ↔ (𝐻𝑥)(𝑆 ∩ (𝐵 × 𝐵))(𝐻𝑦)))
109bibi2d 231 . . . . 5 (((𝐻:𝐴1-1-onto𝐵𝑥𝐴) ∧ 𝑦𝐴) → ((𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ (𝑥𝑅𝑦 ↔ (𝐻𝑥)(𝑆 ∩ (𝐵 × 𝐵))(𝐻𝑦))))
1110ralbidva 2466 . . . 4 ((𝐻:𝐴1-1-onto𝐵𝑥𝐴) → (∀𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ ∀𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)(𝑆 ∩ (𝐵 × 𝐵))(𝐻𝑦))))
1211ralbidva 2466 . . 3 (𝐻:𝐴1-1-onto𝐵 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)(𝑆 ∩ (𝐵 × 𝐵))(𝐻𝑦))))
1312pm5.32i 451 . 2 ((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)(𝑆 ∩ (𝐵 × 𝐵))(𝐻𝑦))))
14 df-isom 5207 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
15 df-isom 5207 . 2 (𝐻 Isom 𝑅, (𝑆 ∩ (𝐵 × 𝐵))(𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)(𝑆 ∩ (𝐵 × 𝐵))(𝐻𝑦))))
1613, 14, 153bitr4i 211 1 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, (𝑆 ∩ (𝐵 × 𝐵))(𝐴, 𝐵))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  wcel 2141  wral 2448  cin 3120   class class class wbr 3989   × cxp 4609  wf 5194  1-1-ontowf1o 5197  cfv 5198   Isom wiso 5199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-f1o 5205  df-fv 5206  df-isom 5207
This theorem is referenced by:  isores1  5793
  Copyright terms: Public domain W3C validator