Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iso0 | GIF version |
Description: The empty set is an 𝑅, 𝑆 isomorphism from the empty set to the empty set. (Contributed by Steve Rodriguez, 24-Oct-2015.) |
Ref | Expression |
---|---|
iso0 | ⊢ ∅ Isom 𝑅, 𝑆 (∅, ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1o0 5490 | . 2 ⊢ ∅:∅–1-1-onto→∅ | |
2 | ral0 3522 | . 2 ⊢ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥𝑅𝑦 ↔ (∅‘𝑥)𝑆(∅‘𝑦)) | |
3 | df-isom 5217 | . 2 ⊢ (∅ Isom 𝑅, 𝑆 (∅, ∅) ↔ (∅:∅–1-1-onto→∅ ∧ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥𝑅𝑦 ↔ (∅‘𝑥)𝑆(∅‘𝑦)))) | |
4 | 1, 2, 3 | mpbir2an 942 | 1 ⊢ ∅ Isom 𝑅, 𝑆 (∅, ∅) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∀wral 2453 ∅c0 3420 class class class wbr 3998 –1-1-onto→wf1o 5207 ‘cfv 5208 Isom wiso 5209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-br 3999 df-opab 4060 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-isom 5217 |
This theorem is referenced by: zfz1iso 10789 |
Copyright terms: Public domain | W3C validator |