Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iso0 | GIF version |
Description: The empty set is an 𝑅, 𝑆 isomorphism from the empty set to the empty set. (Contributed by Steve Rodriguez, 24-Oct-2015.) |
Ref | Expression |
---|---|
iso0 | ⊢ ∅ Isom 𝑅, 𝑆 (∅, ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1o0 5479 | . 2 ⊢ ∅:∅–1-1-onto→∅ | |
2 | ral0 3516 | . 2 ⊢ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥𝑅𝑦 ↔ (∅‘𝑥)𝑆(∅‘𝑦)) | |
3 | df-isom 5207 | . 2 ⊢ (∅ Isom 𝑅, 𝑆 (∅, ∅) ↔ (∅:∅–1-1-onto→∅ ∧ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥𝑅𝑦 ↔ (∅‘𝑥)𝑆(∅‘𝑦)))) | |
4 | 1, 2, 3 | mpbir2an 937 | 1 ⊢ ∅ Isom 𝑅, 𝑆 (∅, ∅) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∀wral 2448 ∅c0 3414 class class class wbr 3989 –1-1-onto→wf1o 5197 ‘cfv 5198 Isom wiso 5199 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-isom 5207 |
This theorem is referenced by: zfz1iso 10776 |
Copyright terms: Public domain | W3C validator |