ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iso0 GIF version

Theorem iso0 5808
Description: The empty set is an 𝑅, 𝑆 isomorphism from the empty set to the empty set. (Contributed by Steve Rodriguez, 24-Oct-2015.)
Assertion
Ref Expression
iso0 ∅ Isom 𝑅, 𝑆 (∅, ∅)

Proof of Theorem iso0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1o0 5490 . 2 ∅:∅–1-1-onto→∅
2 ral0 3522 . 2 𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥𝑅𝑦 ↔ (∅‘𝑥)𝑆(∅‘𝑦))
3 df-isom 5217 . 2 (∅ Isom 𝑅, 𝑆 (∅, ∅) ↔ (∅:∅–1-1-onto→∅ ∧ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥𝑅𝑦 ↔ (∅‘𝑥)𝑆(∅‘𝑦))))
41, 2, 3mpbir2an 942 1 ∅ Isom 𝑅, 𝑆 (∅, ∅)
Colors of variables: wff set class
Syntax hints:  wb 105  wral 2453  c0 3420   class class class wbr 3998  1-1-ontowf1o 5207  cfv 5208   Isom wiso 5209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-br 3999  df-opab 4060  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-isom 5217
This theorem is referenced by:  zfz1iso  10789
  Copyright terms: Public domain W3C validator